摘要
本文探讨了具有费马点 F 的单形△_n={P_0,P_1,…,P_n}的若干性质,得到了空间 E″中任一点 M 到单形的顶点距离之和的不等式;并将 Erds-Mordell 不等式推广到 n 维欧氏空间 E″(n≥3).
In this paper,we discuss some properties of the simplex △_n={P_0,P_1, …,P_n}with Fermat point F,obtain the inequality of distance summation from an arbitra- ry M in E^n to every vertexes of the simplex.Lastly,we extend Erd s-Mordell inequality to n dimensional Euclidean space E^n(n≥3).