期刊文献+

机器人人工嗅觉系统设计 被引量:4

Artificial olfactory system based on a telepresence robot
下载PDF
导出
摘要 利用半导体气体传感器的交叉敏特性 ,将气体传感器阵列与神经网络相结合 ,构建了一个用于临场感机器人的人工嗅觉系统 ,用于气体的定性识别 .自组织神经网络 (SOM )将被测气体的多维特征信息映射到一个二维平面上 ,从而实现了对被测气体的识别分类 .实验结果表明半导体阵列人工嗅觉系统可以提高气体传感器的选择性 。 By using the overlapping sensitivity of chemical gas sensors, an artificial olfactory system based on a telepresence robotic system, combing a chemical gas sensor array with self organizing map (SOM) neural networks, is constructed to qualitatively analyze chemical gases. SOM neural networks have the remarkable capability of transforming the hyperspace characteristics of input gas into a two dimensional map, consequently the gas can be discriminated. Experimental results show that the system increases the selectivity of gas sensors and the SOM neural network is feasible for gas discrimination.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第1期28-31,共4页 Journal of Southeast University:Natural Science Edition
关键词 气体传感器阵列 自组织特征映射 神经网络 人工嗅觉 gas sensor array self organizing map neural networks artificial olfactory system
  • 相关文献

参考文献5

  • 1[1]Davide F, Natale C Di, DAmico A. Self-organizing multisensor systems for odor classification: internal categorization, adaptation and drift rejection[J]. Sensor and Actuators B, 1994, 18(1): 244-258.
  • 2[2]Hanaki S, Nakamoto T, Moriizumi T. Artificial odor-recognition system using neural network for estimating sensory quantities of blended fragrance[J]. Sensor and Actuators A, 1996, 57(1):65-71.
  • 3[3]Dauce E, Quoy M, Cessac B, et al. Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning [J]. Neural Networks, 1998, 11(3): 521-533.
  • 4[4]Lysetskiy M, Lozowski A, Zurada J. Invariant recognition of spatio-temporal patterns in the olfactory system model [J]. Neural Processing Letters, 2002, 15(3): 225-234.
  • 5[5]Natale C Di, Macagnano A, D'Amico A, et al. Electronic-nose modelling and data analysis using a self-organizing map [J]. Measurement Science & Technology, 1997, 8(11):1236-1243.

同被引文献57

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部