期刊文献+

人类视觉注意机制在目标检测中的应用 被引量:37

Applications of human visual attention mechanisms in object detection
下载PDF
导出
摘要 根据人类视觉感知理论,在介绍了两种比较有代表性的视觉注意模型的基础上,采用bottom up控制策略的预注意机制和top down控制策略的注意机制,提出了一种适用于自动目标识别的目标检测算法。从输入图像出发,采用Gabor算子建立多尺度、多方位的多通道图像,通过全波整流和各通道间的对比度增益控制,得到多尺度、多方位的方位特征图,这些特征图的线性组合则为显著性图。给出了仅采用bottom up控制策略的船舶目标检测实验结果,待检测目标在显著性图中得到明显增强,有利于检测的实现。 Two models of visual attention which are consistent with human visual perception are introduced. Based on these two models, an ATR algorithm employing attention mechanisms with bottom-up and top-down control strategies is developed. A multi-channel representation of the input image was obtained by a bank of Gabor filters, corresponding to multiple scales and multiple orientations. Full-wave rectification of each channel and contrast gain control among the channels were performed sequentially to get orientation feature maps with multiple scales and multiple orientations. The so-called salient map was the linear combination of these orientation feature maps. The experimental result with ship detection is given by use of bottom-up control strategy only. The objects for detection are effectively enhanced on the result map.
出处 《红外与激光工程》 EI CSCD 北大核心 2004年第1期38-42,共5页 Infrared and Laser Engineering
关键词 注意机制 目标检测 显著性图 人类视觉 Algorithms Gain control Image analysis Mathematical models
  • 相关文献

参考文献16

  • 1陈勇,皮德富,周士源,顾东升.基于小波变换的红外图像融合技术研究[J].红外与激光工程,2001,30(1):15-17. 被引量:19
  • 2Itti Laurent, Koch Christof, Niebur Ernst. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on PAMI, 1998, 20(11): 1254-1259.
  • 3Itti Laurent, Koch Christof. A comparison of feature combination strategies for saliency-based visual attention [A]. Proc SPIE[C]. 1999,3644. 473-482.
  • 4Itti Laurent. Visual attention and target detection in cluttered natural scenes [J]. Optical Engineering, 2001, 40(9): 1784-1793.
  • 5Blaser Erik, Sperling George, Lu Zhonglin. Measuring the amplification of attention[A]. Proceedings of the National Academy of Sciences of the United States of America[C]. 1999, 96. 11681-11686.
  • 6Tsotsos J K, Culhane S M, Wai W Y K, et al. Modelling visual attention via selecting tuning [J]. Artificial Intelligence, 1995, 78(1-2): 507-545.
  • 7Niebur E, Koch C. Computational architecture for attention. Parasuraman R. The Attention Brain [M]. MA: MIT Press, 1998. 163-186.
  • 8Olshausen B A, Anderson C H, Van Essen D C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information[J]. The Journal of Neuroscience, 1993, 13(11): 4700-4719.
  • 9Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human Neurobiology, 1985, 4: 219-227.
  • 10Milanese R, Gil S, Pun T. Attentive mechanisms for dynamic and static scene analysis[J]. Optical Engineering, 1995, 34(8): 2428-2434.

二级参考文献1

共引文献19

同被引文献394

引证文献37

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部