期刊文献+

广义Battle-Lemarié子波 被引量:4

The Generalized Battle-Lemarié Wavelets
下载PDF
导出
摘要 从Haar尺度函数入手 ,提出尺度系数函数概念 ,引入时移因子 ,将Battle Lemari啨子波基拓展而构造出广义Battle Lemari啨多分辨分析基 .然后从理论上论证这种拓展的合理性与广义Battle Lemari啨基的一些基本性质 .研究结果表明 :所有广义Battle Lemari啨基继承了 (原始 )Battle Lemari啨基的许多优点 ,比如标准正交性 ,时、频局域化特征和指数衰减性等 ,同时还得到一系列新的对称基 ,广义Battle Lemari啨基的正则性优于相应的 (原始 )Battle Starting with investigating the Haar scaling function,the scaling coefficient function is first presented.Then the Battle Lemarié basis is extended to the generalized Battle Lemarié basis by introducing time shift factor to the scaling coefficient function of the Battle Lemarié.The rationality of the extending method,which is used in this paper,is theoretically proved.Some basic properties of the generalized Battle Lemarié basis are also discussed.Our research results show that all the Battle Lemarié bases inherit many good properties of the original Battle Lemarié bases,such as orthonormality,time frequency localization,exponential decay and so on.Meanwhile a series of neoteric symmetric multiresolution analysis basis are generated.The generalized Battle Lemarié wavelets are better than the corresponding original Battle Lemarié wavelets in regularity.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第2期271-275,共5页 Acta Electronica Sinica
关键词 子波构造 尺度系数函数 Haar尺度桥 时移因子 标准正交性 construction of wavelet scaling coefficient function the Haar scaling bridge time shift factor orthonormality
  • 相关文献

参考文献7

  • 1C K Chui. An Introduction to Wavelets [M].Academic Press, 1992.
  • 2I Daubeehies. Teta Lectures on Wavelets [ M ]. Philadelphia, PA:SIAM, 1992.
  • 3M Unser. P Théenaz, A Aldroubi. Shift-orthogonal wavelet bases [ J ].IEEE Trans, SP, 1998,46(7) : 1827 - 1836.
  • 4M Unser. Splines, a perfect fit for signal and image processing [ J ].IEEE. SP Magnzine, 1999: 22 - 38.
  • 5X-P Zhang, M D Desai, Y-N Peng. Orthogonal complex falter banks and wavelets: some properties and design[ J ]. IEEE. Tram SP, 1999,47 (4) :1039- 1048.
  • 6Yuan Xiao, Yu Juebang. A new kind of wavelets based on super-Gaussian spectrum functions [A]. IESP2000 [C]. Beijing, China: ISEP,2000.
  • 7O Rioul. Regular wavelets: a discrete-time approach [J]. IEEE Tram SP, 1993,41(12) :3572 - 3579.

同被引文献34

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部