期刊文献+

一种改进的基于关联图的关联规则挖掘算法 被引量:1

A revised graph-based algorithm for mining association rules
下载PDF
导出
摘要 关联规则是数据挖掘研究的一个重要课题 ,而最大频繁项集的生成是影响关联规则挖掘的关键问题 .在已有的频繁集发现算法中 ,DLG算法通过减少事务数据库的扫描次数 ,进而有效减少挖掘过程的I/O代价 .在阐述DLG算法的实现原理与执行过程的基础上 ,为进一步减少候选项集的数量 ,提出一种改进算法DLG .其主要思想是在关联图构造阶段 ,统计每一个频繁项目的入度 ,以此作为剪枝的依据 . Mining association rules is an important part of data mining field. An d generating the frequent itemsets is a key problem of mining association rules. Among the proposed algorithms of finding frequent itemsets, DLG is a efficient algorithm to controls I/O cost by reducing the number of database passes. The pr inciple and implemental process are discussed, and then a revised algorithm is p resented based on DLG in order to cut down the number of candidates further. The p rinciple of DLG is to count the in-degree of each frequent itemset on which a p runing is based in the phase of constructing graphs. Finally, the performance an alysis and comparison experiments are done and the result shows the algorithm is excellent.
作者 罗楠 李玉忱
出处 《山东大学学报(工学版)》 CAS 2004年第1期99-103,共5页 Journal of Shandong University(Engineering Science)
关键词 关联规则 关联图 比特向量 association rules association bit vector
  • 相关文献

参考文献1

二级参考文献4

  • 1[1]J.S.park,M.S.Chen,P.S.Yu.An efficientive Hash-based algo rithm for mining association rules[C].Processings of ACM SIG MOD,1995 24 (2):175~186
  • 2[2]Maurice Houtsma Arun Swami.Set-oriented mining of association rules [C].In int'l Conf.On Data Enginnering,Taibe,Taiwan.March 1995
  • 3[3]R.Agrawal,Tomasz Imielinski,Arun Swami.Mining association rules between sets of items in large databases [C].In Proc.Washington,D.C.Of the ACM SIGMOD Conference on Man agement of Data.may 1993 207~216.
  • 4[4]R.Agrawal,ramakrishnan Scrikant.Fast algorithms for mining association rules[C].In Proc.Of the 20th Iht' 1 coference on Very large databases,Santiago,Chile,Sept.,1994 487~499

共引文献14

同被引文献19

  • 1HERNANDEZ-LEON R, PALANCAR J H, CARRASCO-OCHOA J A, et al. Algorithms for mining frequent itemsets in static and dynamic datasets [ J ]. Intelligent Data Analysis, 2010, 14(3) :419-435.
  • 2HAN J, KAMBER M. Data mining: concepts and techniques[M]. 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publisher, 2006.
  • 3PIATETSKY-SHAPIRO G. Data mining and knowledge discovery 1996 to 2005 : overcoming the hype and moving from "university" to "business" and "analytics" [ J ]. Data Mining Knowledge Discovery, 2007, 15 ( 1 ) : 99- 105.
  • 4CHIANG D A, WANG Y F, WANG Y H, et al. Mining disjunctive consequent association rules [J]. Applied Soft Computing, 2011, 11(2): 2129-2133.
  • 5AGRAWAL R, IMIELINSKI T, SWAMI A. Mining associations between sets of items in massive databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. Washington D C, USA: ACM Press, 1993. 207-216.
  • 6AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases [ C ]//Proceedings of the 20th International Conference on Very Large Data Bases. Santiago de Chile, Chile: Morgan Kaufmann Publisher, 1994 : 487-499.
  • 7SONG W, YANG B R, XU Z Y. Index-BitTableFI: an improved algorithm for mining frequent itemsets [ J ]. Knowledge-Based Systems, 2008, 21 (6): 507-513.
  • 8VREEKEN J, LEEUWEN M, SIEBES A. Krimp: mining itemsets that compress [J].Data Mining Knowledge Discovery, 2011, 23 ( 1 ) : 169-214.
  • 9HAN J, PEI J, YIN Y, et al. Mining frequent patterns without candidate generation: a frequent-pattern tree approach [ J ]. Data Mining and Knowledge Discovery, 2004, 8 ( 1 ) : 53-87.
  • 10LIU G, LU H, LOU W, et al. Efficient mining of frequent patterns using ascending frequency ordered prefix- tree [ J ]. Data Mining and Knowledge Discovery, 2004, 9 (3) : 249-274.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部