期刊文献+

一种基于时频分析的故障状态监测方法 被引量:2

A Fault Diagnosis Method Based on Time-Frequency Analysis
下载PDF
导出
摘要 提出了一种基于信号PMH时频分布幅值特征进行故障分离定位的方法 ,并以某柴油机在正常状态、排气阀门存在小裂缝和排气阀门存在大裂缝状态三种情况下缸盖振动信号为分析对象 ,对文中提出的方法进行了验证分析 。 A fault diagnosis method based on the characteristic feature of amplitude of Pseudo-Margenau-Hill Distribution(PMHD) is presented. Experiments are carried out when the condition monitoring is in normal state, in fault state of small crack, and in fault state of big crack. Experiment results show that the method has good performance in the fault isolation.
出处 《机械科学与技术》 CSCD 北大核心 2004年第3期303-305,共3页 Mechanical Science and Technology for Aerospace Engineering
关键词 时频分布 故障诊断 PMH分布 Time-frequency distribution Fault diagnosis PMH distribution
  • 相关文献

参考文献5

  • 1张贤达 保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1999.228-258.
  • 2白俊贤.时频分析的原理和应用[M].西安:西安交通大学出版社,1998..
  • 3张贤达.信号处理[M].北京:清华大学出版社,1995..
  • 4夏勇,张振仁,商斌梁,薛模根,郭明芳.基于小波分析与气缸压力的气门故障诊断[J].内燃机工程,2001,22(1):23-27. 被引量:8
  • 5夏勇 张振仁.气缸压力信号的小波分析及其在内燃机故障诊断中的应用[A]..第一届国际机械工程学术会议论文集(中国上海)[C].,2000.610-611.

二级参考文献5

共引文献59

同被引文献18

  • 1王志华.基于时频分析的柴油机活塞环故障振动诊断研究(英文)[J].武汉理工大学学报(交通科学与工程版),2004,28(6):953-956. 被引量:3
  • 2廖广兰,史铁林,黄弢,李巍华.核主元分析在透平机械状态监测中的应用[J].振动.测试与诊断,2005,25(3):182-185. 被引量:4
  • 3陈光军,胡昌华,任章,周志杰.基于时频分析和模式识别的惯性器件故障监测与诊断技术研究[J].电光与控制,2006,13(2):85-87. 被引量:2
  • 4Jochen Leibrich, Hennlng Puder. A TF distribution for disturbed and undisturbed speech signals and its application to noise reduction[J]. Signal Processing, 2000,80:1 761-1 776.
  • 5Pitton James W. The statistics of time-frequency analysis[J]. Journal of the Fraoklin Institute,2000, 337..379-388.
  • 6Tran V T, AIThobiani F, Ball A. An approach to fault diagnosis of reciprocating compressor valves using Teager- Kaiser energy operator and deep belief networks [ J ]. Expert Systems with Applications, 2014,41 (9) :4113-4122.
  • 7Schuhheis S M, Lickteig C A, Parchewsky R. Reciprocating compressor condition monitoring [ C ]//Proceedings of the q3irty-sixth Turbomachinery Syaaalxium. 21X)7:107-113.
  • 8Tian X M, Deng X G. A fault detection method using multi-scale kernel principal component analysis [ C ]// Proceedings of the 27th Chinese Control Conference. Kunming : IEEE, 2008 : 25-29.
  • 9Guo K, San Y, Zhu Y. Nonlinear process monitoring using wavelet kernel principal component analysis [ C ]// Proceedings of 2012 International Conference on Systems and Informatics. Yantai : IEEE, 2012:432-438.
  • 10Deng X G, Tian X M, Chen S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis [ J ]. Chemometrics and Intelligent Laboratory Systems, 2013, 127: 195-209.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部