期刊文献+

电力系统日发电计划的启发式遗传算法 被引量:8

A heuristic genetic algorithm for daily generation scheduling in power system
下载PDF
导出
摘要 机组组合是电力系统日发电计划中主要的优化任务,在满足各种约束条件下求得全局最优解是一个比较困难的事情。遗传算法没有充分利用个体基因的有效信息,所以局部搜索能力较弱,而且随机遗传操作产生的大量不可行解,使得遗传算法的收敛能力降低。为了提高算法的全局搜索能力和收敛性,设计了基于局部优化算法的智能变异算子和消除约束冲突的修复算子。结果表明,运用了新算子的启发式遗传算法收敛到最优解的速度有显著提高。 The combination of generating units is an important optimization task in the daily power generation scheduling in power system. However,it also is one of the most difficult optimization problems in power system,because the problem has many constraints. Since GA does not effectively use all the available information and the operators may generate a large number of infeasible solutions, the searching process does not have satisfactory convergence. In this research work,in order to overcome these difficulties,a new intelligent mutation operator and repair operator for the problem of the combination of generating units based on local optimization method have been proposed. The simulation results show that by implementing the new operators, the heuristic genetic algorithm has satisfactory speed of convergence to the optimum solution.
机构地区 华中科技大学
出处 《水力发电》 北大核心 2004年第1期7-11,共5页 Water Power
关键词 遗传算法 启发式算法 局部优化算法 机组组合 日发电计划 电力系统 Genetic algorithm heuristic method local optimal algorithm combination of generating units daily power generation power system
  • 相关文献

参考文献7

  • 1[1]Mashhadi,H. R.,Shanechi,H.M.,Lucas,C..A new genetic algorithm with Lamarckian individual learning for generation scheduling[J]. Power Systems. IEEE Transactions on,2003,18 (3): 1181-1186.
  • 2[2]Zhu Mingyu,Cen Wenhui,Wang Mingyou,Zhang Peichao. Using an enhanced genetic algorithm to solve the unit commitment problem Intelligent Processing Systems[J]. 1997 IEEE International Conference on, 1997,1.
  • 3[3]Senjyu,T., Yamashiro,H.,Uezato,K.,Funabashi,T..A unit commitment problem by using genetic algorithm based on unit characteristic classification Power Engineering Society Winter Meeting[C]. IEEE 2002,1.(1) :58-63.
  • 4[4]Ratanakul,Anotai,Ph. D. A new efficient algorithm for unit commitment and economic dispatch planning[J]. Dissertation Abstracts International,2001,62(1 ) :1-172.
  • 5[5]Minliang Wang, Boming Zhang, Youman Deng. A novel unit commitment method considering various operation constraints[J]. Power Engineering Society Winter Meeting,2000,3.
  • 6[6]Ohta, T.,Matsui,T.,Takata,T.,Kato,M.,Aoyagi,M.,Kunugi,M.,Shimada,K.,Nagata,J..Practical approach to unit commitment problem using genetic algorithm and Lagrangian relaxation method[J]. Intelligent Systems Applications to Power Systems, 1996.
  • 7[7]Mantawy,A. H.,Abdel-Magid,Y.L,Selim,S.Z.. A simulated annealing algorithm for unit commitment[J]. Power Systems,IEEE Transactions,1998,13 (1): 194-204.

同被引文献55

  • 1李茂军,罗安,童调生.人工免疫算法及其应用研究[J].控制理论与应用,2004,21(2):153-157. 被引量:43
  • 2张作鹏,刘崇新,逯俊杰,韩俊玉.混沌时间序列预测在短期电力负荷预测中的应用[J].陕西电力,2007,35(1):24-26. 被引量:7
  • 3[2]Li Shenghu,Ding Ming,Du Xueqiao.Power system probabilistic simulation using importance sampling[J].Journal of Hefei University of Technology,1999,22(6):20-25.
  • 4[3]Zhuang F,Galiana F D.Towards a more rigorous and practical unit commitment by lagrangian relaxation[J].IEEE trans on Power System,1988,3(2):763-773.
  • 5[5]Ioannis G Damousis,Anastasio G Bbkirtzis.Network-constrained economic dispatch using real-coled genetic algorithm[J].IEEE Transactions on Power System,2003,18(1):198-205.
  • 6WOOD A J,WOLLENBERG B F.Power Generation.Operation,and Control.2nd ed.北京:清华大学出版社,2003.
  • 7A.S. Malik. Simulation of DSM Resources as Generating Units in Probabilistic Production Costing Framework[J]. IEEE Transactions on Power Systems, 1998,13(4) : 1528-1533.
  • 8Valsan S P,Swarup K S.Hopfield neural network approach to the solution of economic dispatch and unit commitment[C]//Proceedings of International Conference on Intelligent Sensing and Information Processing.Chennai,India,2004:311-316.
  • 9Swarup K S,Yamashiro S.Unit commitment solution methodology using genetic algorithm[J].IEEE Trans on Power Systems,2002,17(1):87-91.
  • 10Hong Yingyi,Li Chihyuan.Genetic algorithms based economic dispatch for cogeneration units considering multiplant multibuyer wheeling[J].IEEE Trans on Power Systems,2002,17(1):134-140.

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部