摘要
文章给出了一种新的语言辨识系统,该系统基于高斯混合模型的区分性训练算法。该区分训练算法在估计模型参数时,采用了广义概率下降法(GPD)和最小分类误差准则(MCE)。利用OGI多语言电话语料库对算法进行了测试,实验表明,该算法是进行语言辨识的一种有效方法。
In this paper,a novel discriminative training procedure for a Gaussian Mixture Model(GMM)language iden-tification system is described.The proposal is based on the Generalized probabilistic Descent (GPD)algorithm and Mini-mum Classification Error Rates formulated to estimate the GMM parameters.The evaluation is conducted using the OGI multi-language telephone speech corpus.The experimental results show such system is very effective in language identifi-cation tasks.
出处
《计算机工程与应用》
CSCD
北大核心
2004年第6期108-110,共3页
Computer Engineering and Applications
基金
国家自然科学基金资助课题(编号:60372038)
关键词
高斯混合模型
广义概率下降法
误分类测度
Gaussian Mixture Model(GMM),Generalized Probabilistic Descent (GPD),Misclassification measure