期刊文献+

图像序列中机动目标三维运动和结构的计算 被引量:2

Calculation of 3D Motion and Structure from Optical Flow in Image Sequence
下载PDF
导出
摘要 综合视觉运动分析中的2类处理方法,选取图像中的角点作为特征点,在理论上证明了图像序列的光流场可以近似地用角点的位移场代替。利用已有文献中的建模思想,详细推导出递归计算机动目标三维运动和结构的非线性计算模型,采用广义卡尔曼滤波(EKF)递归地计算图像序列中机动目标的三维运动和结构。合成图像序列和真实图像序列实验结果表明该算法能取得较好的效果。 The paper presents a method for optical flow estimating, which combines feature based with flow based method. By using the corner points as feature points and estimating the optical flow from image sequence, the optical flow is estimated by measuring the displacement of sparse located corner points between consecutive frames. It is proved theoretically that optical flow can be replaced approximately by the displacement field. The paper also estimates 3D motion and structure from optical flow in image sequence. The implementation of a non-linear algorithm is described, whose uniform observability, minimal realization and stability are proved analytically. Experimental results show that the method provides a good estimation of the optical flow and 3D motion and structure.
出处 《航空学报》 EI CAS CSCD 北大核心 2004年第1期55-58,共4页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(No.60275037) 航空基础科学基金(No.99F53065) 江西省测试技术与控制工程研究中心开放基金(No.2001 15)资助项目
关键词 光流场 角点位移场 广义卡尔曼滤波 三维运动和结构 图像序列 计算机视觉 Calculations Image analysis Kalman filtering Optical flows Three dimensional
  • 相关文献

参考文献6

  • 1陈震,高满屯,沈允文.图象光流场计算技术研究进展[J].中国图象图形学报(A辑),2002,7(5):434-439. 被引量:31
  • 2Tomasi C, Kanade T. Detection and tracking of point features[R]. CMU-CS-91132, Pittsburgh: Carnegie Mellon University School of Computer Science, 1991.
  • 3Shi J, Tomasi C. Good features to track[A]. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 94) [ C]. Seattle, Washington, 1994.593 - 600.
  • 4Azarbayejani A, Pentland A. Recursive estimation of motion,structure and focal length[J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(6): 562 - 575.
  • 5Chiuso A, Soatto S. 3-D motion and structure from 2-D motion causally integrated over time. Part I: theory[A]. IEEE Conference on Robotics and Automation[ C]. San Francisco,Canada, 2000. 734- 750.
  • 6Kanatani K. Geometric computation for machine vision [ M ].Oxford: Oxford Science Publications, 1993.

二级参考文献4

共引文献32

同被引文献29

  • 1吴学成,王勤辉,骆仲泱,高琼,方梦祥,岑可法.高速数字摄影应用于流化床内颗粒旋转特性的测试[J].中国电机工程学报,2005,25(17):72-77. 被引量:11
  • 2骆仲泱,吴学成,王勤辉,高琼,方梦祥,岑可法.循环流化床中颗粒旋转特性[J].化工学报,2005,56(10):1869-1874. 被引量:15
  • 3Allmen M.C.. Image sequence description using spatiotemporal flow curves: Toward motion-based recognition[ Ph D dissertation]. University of Wisconsin- Madison, Wisconsin, USA, 1991
  • 4Strickland R.N., Mao Z.. Contour motion estimation using relaxation matching with a smoothness constraint on the velocity field. Computer Vision, Graphics, and Image Processing: Image Understanding, 1994, 60(2): 157~167
  • 5Williams D.J., Shah M.. A fast algorithm for active contours and curvature estimation. Image Understanding, 1992, 55(1): 14~26
  • 6Kumar A., Tannenbaum A.R., Balas G.J.. Optical flow: A curve evolution approach. IEEE Transactions on Image Processing, 1996, 5(4): 598~610
  • 7Fleet D.J., Black M.J., Yacoob Y. et al.. Design and use of linear models for image motion analysis. International Journal of Computer Vision, 2000, 36(3): 171~193
  • 8Liu Y., Huang T.S.. A linear algorithm for motion using straight line correspondence. Computer Vision, Graphics and Image Processing, 1988, 44(1): 35~57
  • 9Liu Y., Huang T.S., Faugeras O.D.. Determination of camera location from 2-d to 3-d line and point correspondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 28~37
  • 10Spetsakis M.E., Aloimonos J.. Structure from motion using line correspondences. International Journal of Computer Vision, 1990, 4(2): 171~183

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部