期刊文献+

基于LPC美尔倒谱特征的带噪语音端点检测 被引量:6

Endpoint Detection of Noisy Speech Based on LPC Cepstrum
下载PDF
导出
摘要 复杂的噪声环境是语音识别系统在实际应用中性能下降的原因之一,识别预处理中的带噪端点检测作为关键技术,其性能的优劣某种程度上决定了识别率的高低。笔者提出了基于LPC美尔倒谱特征的带噪端点检测方法,对语音信号分高低频段分别提取LPC美尔倒谱特征分析,根据Mel倒谱距离判决,采用自适应噪声估计,实验结果表明,该方法计算效率较高,低信噪比下有较好的检测性能。 One of the causes reducing the capacity of speech recognition(SR)systems in practical use is the complex noisy environment. As an important technology in the preparation of SR, the endpoint detection of noisy speech's accuracy determines the SR rates in some degree. In this article, a method based on LPCCMCC for endpoint detection of noisy speech signal is proposed. It filtered the speech signal into high and low frequency bands, then analyzed LPC Mel cepstrum feature  LPCCMCC  respectively, and decided the endpoint by Mel cepstral distance, making the estimation of noise adaptive. The experiments show that higher efficiency and good detection capability can be obtained under the condition of low SNR.
出处 《电声技术》 北大核心 2004年第2期53-55,58,共4页 Audio Engineering
基金 国家自然科学基金(69963002)
关键词 语音识别 带噪端点检测 LPC美尔倒谱特征 Mel倒谱距离 endpoint detection LPC Mel cepstrum feature(LPCCMCC) speech recognition Mel cepstral distance
  • 相关文献

参考文献5

二级参考文献21

  • 1[1]Acero A.Acoustical and environmental robustness in Automatic speech recognition[M].Dordrecht:Kluwer Academic Publishers,1992
  • 2[2]Bellegarda J R,Souza P V,Nadas A J et al. Robust speaker adaptation using a piecewise linear acoustic mapping[C].ICASSP′92,1992:445-448
  • 3[3]Kanedera N,Arai T,Hermansky H et al.On the relative importance of various components of the modulation spectrum for automatic speech recognition[J].Speech Communication, 1999;28( 1 ) :43-55
  • 4[4]Varga A P,Moore R K.Hidden Markov model decomposition of speech and noise[C].ICASSP 90,1990:845-848
  • 5[5]Gales M J F,Young S J.Cepstral parameter compen-sation for HMM recognition[J].Speech Communication, 1993; (12) :231-239
  • 6[6]Gong Yifan. Speech recognition in noisy environments:A survey[J].Speech Communication, 1995; 16:261-291
  • 7[7]Huang X D,Lee K F.On speaker-independent,speaker-dependent,and speaker-adaptive speech recognition[J].IEEE Transactions on Speech and Audio Processing, 1993; 1 (2): 150-157
  • 8[8]Hermansky H,Morgan N.RASTA processing of Speech[J].IEEE Trans on Speech and Audio Processing,1994;2(4):578-589
  • 9[9]Hermansky H.Perceptual linear predictive(PLP)analysis of speech[J].Journal of Acoust.Soc. Am., 1990;87(4): 1738-1752
  • 10[10]Lavner Y,Gath I,Rosenhouse J.The effects of acoustic modifications on the identification of familiar voices speaking isolated vowels[J].Speech Communication,2000;30( 1 ) :9-26

共引文献81

同被引文献34

  • 1于迎霞,史家茂.一种改进的基于倒谱特征的带噪端点检测方法[J].计算机工程,2004,30(19):85-87. 被引量:13
  • 2丁玉薇.被动声纳目标识别技术的现状与发展[J].声学技术,2004,23(4):253-257. 被引量:33
  • 3柏静,韦岗.一种基于线性预测与自相关函数法的语音基音周期检测新算法[J].电声技术,2005,29(8):43-46. 被引量:14
  • 4韩丁,沈保锁.一种有效的语音变调算法[J].电子测量技术,2006,29(5):55-56. 被引量:3
  • 5He S N,Yu J B.A novel chinese continuous speech endpoint detection method based on time domain features of the word structure[C].IEEE 2002 International Conference on Communications,Circuits and Systems and West Sino Expositions,2002,(6):992-996.
  • 6Hong Kook Kim,Richard C Rose.IEEE Transaction on Speech and Audio Processing,2003,11(5):435-446.
  • 7Hong Kook Kim, Richard C. Rose, Cepstrum-Domain Acoustic Feature Compensation Based on Decomposition of Speech and Noise for ASR in Noisy Environments. IEEE Transaction on Speech and Audio Processing, 2003, 11(5). 435-446
  • 8Hyun Donghoon, Lee Chulhee. Optimization of Mel-Cepstrum for Speech Recognition. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1999, (1): I-500-I-503
  • 9RABINER L R, SAMBUR M R.An algorithm for determiningthe end points of isolated utterances [ J ]. r131e Bell System Technical ournal, 1975,54 (2) 297- 315.
  • 10WU J, ZHANG X L.Effieient multiple kernel support vector machine based voice activity detection [ J 1 .Signal Processing Letters, IEEE, 2011,18 (8) :466-469.

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部