期刊文献+

基于α-Stable自相似随机过程的通信网业务量建模 被引量:5

Network Traffic Modeling Based on α-Stable Self-Similar Stochastic Processes
下载PDF
导出
摘要 针对现代通信网业务量在幅度和时间尺度上的突发特性,提出了一种综合稳定分布和高斯自相似分布的模型,即基于α-Stable自相似过程的模型来同时反映业务量的两种突发特性,并通过仿真证明了它非常适合于现代通信网的业务量.该模型可以根据不同的性能需要来产生相应的模拟业务量,从而对网络业务量性能相关的研究有一定的实用价值. Aiming at the burst capability in extent and time, the article proposed a model for network heavy-traffic approximation, based on α-stable self-similar processes, which integrates stable distributing and Gauss self-similar distributing. The simulations show that the model fits to modern network traffic. The model can generate the corresponding simulated traffic based on different capability, which is helpful to the relevant research of network traffic.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第2期200-202,206,共4页 Journal of Shanghai Jiaotong University
关键词 通信网 稳定分布 业务量 突发 自相似 随机过程 建模 Computer simulation Model buildings Stochastic control systems Telecommunication traffic
  • 相关文献

参考文献8

  • 1[1]Shao M, Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications [J]. Proceedings of IEEE, 1993,81 (7):986-1010.
  • 2[2]Willinger W, Taqqu M S, Sherman R, et al. Selfsimilarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level[J]. IEEE/ACM Trans Networking, 1997,5(1):71-76.
  • 3[3]Harmantzis F C, Hatzinakos D, Katzela I. Tail probabilities for the multiplexing of fractional α-Stable broadband traffic [A]. Proc ICC'01 [C]. Helsinki,Finland: IEEE, 2001. 2665-2669.
  • 4[4]Samorodnitsky G, Taqqu M S. Stable non-Gaussian random processes [M]. London: Chapman & Hall,1994.
  • 5[5]Karasaridis A, Hatzinakos D. A non-Guassian selfsimilar process for broadband heavy traffic modeling[A]. Proceedings of the 1998 IEEE GLOBECOM[C]. Sydney, Australia: IEEE, 1998. 2995-3000.
  • 6[6]Gallardo J R, Makrakis D, Orozco L. Use of α-Stable self-similar stochastic processed for modeling traffic in broadband networks [J]. Performance Evaluation,2000,40:71-98.
  • 7[7]Kogon S M, Manolakis D G. Signal modeling with self-similar α-Stable processes: the fractional levy stable motion model[J]. IEEE Trans on Signal Processing, 1996,44 (5): 1006- 1010.
  • 8[8]Weron R. Performance of the estimators of stable law parameters [EB/OL]. http ://www. IM. pwr. wroc.pl/~hugo/publications, html, 1995 - 01 - 10.

同被引文献42

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部