期刊文献+

逆变器消谐PWM模型的快速同伦算法 被引量:6

Fast Homopoty Algorithm of the Inverter Harmonic Elimination PWM Model
下载PDF
导出
摘要 介绍了单极性脉冲和双极性脉冲两种控制模型 .针对早期模型的求解费时的问题 ,将有效步长控制法和同伦方法相结合 ,构造了求解此类模型的快速同伦算法 .该算法搜索步长可自动调整 ,算法迭代的收敛域扩大 ,且需求迭代的次数相比于牛顿法可减少40 %~ 50 % ,相比于一般的同伦算法可减少 1 5%~ 2 0 % . Two harmonic elimination control model of single-p ha se inverter, ie.,the unipolar pulse control model and the bipolar pulse control model, were introduced. Aiming at the disadvantage of long solving time cost of traditional models,a fas t homopoty algorithm for solving the model was presented by combining the valid st ep control with the homopoty method.This method has a primary featrue of auto-ad justing search step. The algorithm convergence domains w as expended. The number of iteration step needed is less 40%~50% than Newton's, and is less 15%~20% than genernal homopoty algrithm's.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期28-30,共3页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目 (50 0 0 70 0 1) 广东省自然科学基金资助项目 (990 582 )
关键词 消谐模型 有效步长控制法 同伦算法 逆变器 harmonic elimination model valid step control meth od homopoty algorithm inveter
  • 相关文献

参考文献7

  • 1谢运祥,薛英杰.逆变电源的谐波处理方法分析[J].电力电子技术,2000,34(1):4-6. 被引量:14
  • 2谢运祥,周炼,彭宏.逆变器消谐PWM模型的同伦算法研究[J].中国电机工程学报,2000,20(10):23-26. 被引量:68
  • 3Patal H S, Hoft R G. Generalized technique of harmonic elimination and voltage control in thyristor inverter(Part 1 ): Harmonic elimination [J ]. IEEE Trans onIA,1973, 9(3): 301-317.
  • 4Patal H S, Hoft R G. Generalized technique of harmonic elimination and voltage control in thyristor inverter(Part 2): Voltage control techniques [J]. IEEE Trans on IA, 1974, 10(5): 666- 673.
  • 5Enjeti P, Lindsay J F. Solving nonlinear equations of harmonic elimination PWM in power control [J].Electronics Letters, 1987, 23(12) : 656 - 657.
  • 6Sun J, Beineks S, Grotstollen H. Optimal PWM based on real-time solution of harmonic elimination equations [J]. IEEE Trans on PE, 1996, 11(4): 612-621.
  • 7Ortega J. Iterative solution of nonlinear equation in several variables [ R]. New York: Academic Press,1970.

二级参考文献6

共引文献76

同被引文献44

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部