期刊文献+

广义Hamilton系统的一类不变性与守恒量

Invariance and Conserved Quantity of the Generalized Hamilton System
下载PDF
导出
摘要 用无限小变换的方法,研究广义Hamilton系统在时间和坐标的无限小变换下的一种新的不变性,并由这种不变性导出一类守恒量的存在条件和形式,给出寻找守恒量的一类新方法.用典型例子说明方法的应用.结果表明,该方法不同于Noether方法、Lie方法及形式不变性方法. Using the method of infinitesimal transformations, a new invariance of the generalized Hamilton system under infinitesimal transformations of time and coordinates is studied. From this the conditions and forms of existence of a conserved quantity of the system are derived. A new method to seek the conserved quantity is given. Some typical examples are given to illustrate the application of the method. The results indicate that the method is different from the Noether method, the Lie method and the form invariance method.
作者 吴惠彬
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2004年第1期20-22,共3页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(19972010 10272021)
关键词 广义HAMILTON系统 对称性 守恒量 generalized Hamilton system symmetry conserved quantity
  • 相关文献

参考文献6

  • 1[2]Olver P J. Applications of Lie groups to differential equatio ns[M]. New York: Springer-Verlag, 1986.
  • 2[3]Marsden J E, Ratiu T S. Introduction to mechanics and symmetry[M]. New York: Springer-Verlag, 1994.
  • 3[7]Mei Fengxiang. Nonholonomic mechanics[J]. ASME Appl Mech Rev, 2000, 53(11):283-305.
  • 4[8]Mei Fengxiang. Lie symmetries and conserved quantities of constrained mechanical systems[J]. Acta Mechanica, 2000,141(3-4):135-148.
  • 5[9]Mei Fengxiang. Form invariance of Appell equations[J]. Chin Phys, 2001,10(3):177-180.
  • 6[10]Wang Shuyong, Mei Fengxiang. Form invariance and Lie symmetry of equations of nonholonomic systems[J]. Chin Phys, 2002,11(1):5-8.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部