期刊文献+

基于RBF神经网络的热工过程在线自适应建模算法研究 被引量:19

A STUDY ON RBF NEURAL NETWORK BASED ONLINE ALGORITHM MODELS ADAPTIVE TO THERMAL PROCESSES
下载PDF
导出
摘要 传统的各种神经网络建模方法由于自身的局限性不能很好地应用于复杂的热工过程建模。该文提出了一种新型的基于RBF网络的热工过程在线自适应建模算法:近似相关性网络(ACN)建模和阶层补偿式网络结构(HCN)建模。文中与资源分配网络(RAN)进行了详细的算例比较,并进一步计算了实际的热工非线性模型。计算结果表明:该文提出的建模算法不仅能提高模型的输出精度,而且也可有效地减小网络的规模,较好地解决了神经网络超界空间的自适应构造问题,为热工过程全局非线性模型的建立提供了一个新的解决方法。 Due to their inherent imperfections, the traditional neural networks cannot be well used in complicated thermal process modeling. Therefore, this paper proposes a new adaptive RBF network algorithm composed of Approximate Correlation Network (ACN) and Hierarchies Compensatory Networks (HCN).In addition, the paper compares the new algorithm with the Resource-Allocating Network (RAN) by a typical calculation example in details, and finally applies the new algorithm for a nonlinear real thermal process modeling. The computational results show that the new algorithm not only improves precision of the outputs but also reduces the network size evidently, that leads the neural network adaptive algorithm to a new appropriate range beyond the boundary of the primary space. It also shows itself as an effective approach for whole nonlinear modeling for thermal processes by the proposed algorithm.
机构地区 东南大学动力系
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第1期191-195,共5页 Proceedings of the CSEE
基金 国家自然科学基金项目(50076008) 江苏省青年科技基金项目(BQ2000002)。
关键词 热工过程 在线自适应建模算法 RBF神经网络 资源分配网络 Thermal process Modeling Approximate correlation networks Hierarchies compensatory networks
  • 相关文献

参考文献3

二级参考文献16

  • 1张化光.热工过程的模糊辨识与控制[M].南京:东南大学,1991..
  • 2范永胜,徐治皋,陈来九.基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997,17(1):23-28. 被引量:205
  • 3Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Trans Syst.,Man, Cybern., 1985,15(1): 116-130.
  • 4Nie J H, Lee T.H..Rule-based modeling: fast construction and optimal manipulation [J]. Part A, IEEE Trans. Syst.,Man, Cybem., 1996,26(6):728-738.
  • 5Xu L, Krzyzay A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection [J], IEEE Trans.Neural Networks, 1993, 4(4): 636-649.
  • 6Shimoji S.,Lee S. Data clustering with entropical scheduling [C].Proceeding of IEEE Conference on Fuzzy Sytems, 1994,2423-2428.
  • 7Box G E P, Jenkins GM..Time series analysis, forcasting and control [M],San Francisco, Holden Day, 1970.
  • 8Tong R.M. Synthesis of fuzzy models for industrial processes [J]. Int.Gen. Syst., 1978,4(1): 143-162.
  • 9Pedrycz W. An identification of fuzzy relational systems [J]. Fuzzy Sets Syst., 1984, 13(2): 153-167.
  • 10Xu C W, Zailu Y. Fuzzy model identification and self-learning for dynamic systems [J]. IEEE Trans. Syst. Man Cybern., 1987, 17(4): 683-689.

共引文献129

同被引文献211

引证文献19

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部