期刊文献+

GaAs体材料及其量子阱的光学极化退相特性 被引量:2

Mechanism of optical polarization dephasing in bulk GaAs and multiple quantum wells
原文传递
导出
摘要 采用飞秒时间分辨瞬态简并四波混频技术 ,在室温下测量了GaAs体材料及其量子阱材料GaAs Al0 3Ga0 7As的光学极化超快退相时间 ,当激光中心波长为 785nm ,受激载流子浓度为 10 1 1 cm- 2 时 ,它们的退相时间分别为 2 8fs和4 6fs.量子阱材料的退相时间比体材料的长 ,这是由于量子阱中的载流子在垂直于GaAs AlGaAs界面的运动受到限制 ,运动呈现二维特性 ,大大减小了载流子的散射概率 .实验中观察到瞬态简并四波混频信号的强弱与入射光的强度和偏振方向有关 。 The optical polarization dephasing times in bulk GaAs and GaAs/Al 0.3Ga 0.7As quantum wells at room temperature are measured using time-resolved degenerate-four-wave mixing (DFWM). Under the conditions of excitation pulse central wavelength of 785nm and carrier density of 10 11cm -2, the dephasing times of 28 and 46 fs for bulk GaAs and multiple quantum wells, respectively, are measured. Because the carrier-carrier scattering rate in quantum wells is reduced due to the confinement of the carrier behavior,the dephasing time of the quantum wells is longer than that of bulk. The dependence of the DFWM signal on the intensity and the polarization of the incident pulses is evaluated by a theoretical model of third-order nonlinear density matrix.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第2期640-645,共6页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :60 1780 2 0 698880 0 5 10 2 7410 7) 广东省自然科学基金 (批准号 :0 112 0 4和 2 0 0 2B1160 )资助的课题~~
关键词 飞秒激光脉冲 砷化镓材料 量子阱 密度矩阵 时间分辨 简并四波混频 退相特性 偏振方向 time-resolved degenerate-four-wave mixing, femtosecond laser pulses, dephasing, density matrix
  • 相关文献

参考文献2

二级参考文献11

  • 1[1]DeBeer D, Usadi E and Hartmann S R 1988 Phys. Rev. Lett. 60 1262
  • 2[2]Graossman C H and Schwendiman J J 1998 Opt. Lett. 23 624
  • 3[3]Bousquet B, Canioni L and Sarger L 1998 J. Chem. Phys. 17 7319
  • 4[4]Taylor A J, Erskine D J and Tang C L 1985 J. Opt. Soc. Am. B 2 663
  • 5[5]Lin W Z, Peng W J, Qiu Z R et al 1992 Acta Phys. Sin.(Oversea Edition) 1 63
  • 6[6]Shen Y R and Yie P X 1982 Phy. Rev. A 25 2183
  • 7[7]Kozich V, de Menezes L S and de Araujo C B 2000 J. Opt. Soc. Am. B 17 973
  • 8[8]Leo K, Gobel E O, Damen T C et al 1991 Phy. Rev. B 44 5726
  • 9[9]Zhang H C, Deng L, Wen J H et al 2001 Science in China A 44 1340
  • 10Ganikhanov F,Appl Phys Lett,1998年,73卷,64页

共引文献4

同被引文献15

  • 1Georg B H,Tammo T, Ilja R, et al. Evidence of DensityDependent Dephasing in Interferometric Four-Wave-Mixing Experiments on Heavy-Hole Excitons in ZnSe Quantum Wells[J]. Physica B, 2002,314: 283-287.
  • 2Koichi A,Nobuyuki T,Tetsuya N,etal. Ultrafast Optical Response of Excitons Weakly Confined in Semiconductors[J]. Physica B, 2002,314 : 293-297.
  • 3Shen Yuan-rang. The Principles of Nonlinear Optics [M]. New York: John Wiley & Sons Inc, 1984. 213-216.
  • 4Erland J, Balslev I. Tehory of Quantum Beat and Polarization Interference in Four-Wave Mixing[J]. Phys Rev A, 1993,48 : 1765-1768.
  • 5Leo K, Damen T C, Shah J,et al. Quantum Beats of Light Hole and Heavy Hole Excitons in Quantum Well [J]. Appl Phys Lett, 1990,57 : 19-21.
  • 6Leo K, Damen T C, Shah J,et al. Quantum Beats of Free and Bound Excitons in GaAs/Alx Ga1-x As Quantum Wells [J]. PhysRev B ,1990,42:11359-11361.
  • 7Gobel E O, Leo K, Damen T C,etal. Quantum Beats of Excitons in Quantum Wells[J]. Phys Rev Lett,1990,64: 1801-1804.
  • 8Zimmermann R,Hofmann M R,Euteneuer A,etal. Quantum Beat Spectroscopy on Excitons in GaN[J]. Materials Science and Engineering, 1997, B 50 : 205-207.
  • 9Koch M, Feldmann J, Plessen G V,et al. Quantum Beat Versus Polarization Interference: An Experimental Distinction[J]. Phys Rev Lett, 1992,69 : 3631-3634.
  • 10Lyssenko V G, Erland J, Baslslev I,et al. Nature of Nonlinear Four-Wave-Mixing Beats in Semiconductors [J]. Phys Rev B, 1993,48: 5720-5723.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部