期刊文献+

基于自适应模拟退火遗传算法的多杂质用水网络设计 被引量:11

Design of water utilization network with multiple contaminants based on adaptive simulated annealing genetic algorithm
原文传递
导出
摘要 水资源的短缺和环境污染的日益严重,对过程工业提出了减少新鲜水用量和废水排放量的要求,且通常废水中都含有多种污染物,由此本文提出了考虑回用的多杂质用水网络设计。不但建立了多杂质用水网络超结构MINLP 模型,而且针对MINLP 问题求解困难的现状,开发了自适应模拟退火遗传算法。实例研究结果表明该算法可以找到全局最优解且计算时间可满足要求。另外,该算法可有效避免陷入局部最优,也不要求提供初始可行解。 The scarcity of water resource and the severity of environmental pollution provide strong incentive for process industries to re-duce fresh water consumption and wastewater discharge,and usually there are multiple contaminants in wastewater.So design of water u-tilization with multiple contaminants considering wastewater reuse is presented.Not only the MINLP model of superstructure of water utili-zation network with multiple contaminants is built,but also an adaptive simulated annealing genetic algorithm is adopt because the MINLPproblem is difficult to solve.The result of case study shows that the hybrid algorithm can find global optimum and the calculation time issatisfactory.Otherwise,the hybrid algorithm can avoid trapping in local optimum and does not need initial feasible solution.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2004年第1期79-82,共4页 Computers and Applied Chemistry
关键词 自适应模拟退火遗传算法 多杂质 用水网络 设计 过程工业 混合整数非线性规划 超结构 water utilization network multiple contaminants adaptive simulated annealing genetic algorithm
  • 相关文献

参考文献10

  • 1Wang YP and Smith R.Wastewater minimization.Chemical Engineering Science,1994,49(7): 981-1006.
  • 2Kuo WCJ and Smith R.Design of water-using systems involving regeneration.Trans IchemE,Part B,1998,76:94-114.
  • 3Yang YH,Lou HH and Huang YL.Synthesis of an optimal wastewater reuse network.Water Management,2000,20:311-319.
  • 4Mann JG and Liu YA.Industrial Water Reuse and Wastewater Minimization.McGraw-Hill,1999:311.
  • 5Kirkatrick S,Gellatt CD and Vechi MP.Optimization by simulated annealing.Science,1983,220:671-680.
  • 6Maier RW and Whiting WB.The variation of parameter settings and their effects on performance for the simulated annealing algorithm.Computers and Chemical Engineering,1998,22:47-62.
  • 7Eiben AE,Aarts EH and Van Hee KM.Global convergence of genetic algorithm: an infinite Markov chain analysis.In: Schwefel HP,Manner R eds.Parallel Problem Solving from Nature.Heidelberg,Berlin:Springer-Verlag,1994:4-12.
  • 8Qi X and Palmieri F.Theoretical analysis of evolution algorithms with an infinite population size in continuous space,Part Ⅰ: basic properties of selection and mutation.IEEE Trans on Neural Networks,1994,5(1):102-119.
  • 9Rudolph G.Convergence analysis of canonical genetic algorithms.IEEE Trans on Neural Networks,1994,5(1):96-101.
  • 10Srinivas M and Patnaik LM.Adaptive probabilities of crossover and mutation in genetic algorithms.IEEE Trans System,Man and Cybernetics,1994,24(4):656-667.

同被引文献132

引证文献11

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部