Nonequilibrium dynamical phase transition of 3D kinetic Ising/Heisenberg spin system
被引量:1
参考文献24
-
1Hoffmann K H and Schreiber M 1996 Computational Physics (Berlin: Springer) pl0.
-
2Ausloos M and Elliot R J 1983 Magnetic Phase Transitions (Berlin: SprinKer) p46.
-
3Chakrabarti B K and Acharyya M 1999 Rev. Mod. Phys.71 847.
-
4Sides S W, Rikvold P A and Novotny M A 1998 Phys.Rev. E 57 6512.
-
5Achaxyya M and Chakrabarti B K 1995 Phys. Rev. B 52 6550.
-
6Acharcyya M 1998 Phys. Rev. E 58 174.
-
7Rao M, Krishnamurthy H R and Pandit R 1990 Phys.Rev. B 42 856.
-
8Sides S W, Ramos R A and Rikvold P A 1997 J. Appl.Phys. 81 5597.
-
9He Y L and Wang G C 1993 Phys. Rev. Lett. 70 2336.
-
10Shao Y Z, Shek C H and Lai J K 1999 Phys. Star. Sol. B 214 Rll.
同被引文献3
-
1邵元智,钟伟荣,林光明,李坚灿.随机外磁场作用下Ising自旋体系的随机共振[J].物理学报,2004,53(9):3157-3164. 被引量:7
-
2邵元智,钟伟荣,林光明.动态外场作用下Ising自旋体系的非平衡动态相变[J].物理学报,2004,53(9):3165-3170. 被引量:2
-
3钟伟荣,邵元智,何振辉.关联噪声作用下肿瘤生长的随机共振[J].科学通报,2005,50(22):2475-2478. 被引量:7
-
1姜伟,王喜坤,赵强.The study of magnetization of the spin system in the ground state[J].Chinese Physics B,2006,15(4):842-844.
-
2金学军,俞晓明.旋转体系中负载弹簧的应力分析[J].物理与工程,2004,14(4):18-20. 被引量:2
-
3邵元智,J.K.L.Lai,等.onequilibrium Dynamical Phase Transition of a Three—Dimensional Kinetic Heisenberg Spin System[J].Chinese Physics Letters,2002,19(9):1344-1346.
-
4聂德明,林建忠,黄利忠.旋转体系中湍流的LBM模拟[J].计算物理,2013,30(1):11-18. 被引量:2
-
5俞晓明,金学军,何捷.旋转体系中空载弹簧的应力分析[J].物理与工程,2003,13(5):13-15. 被引量:5
-
6王平,唐少强.Numerical study of dynamic phase transitions in shock tube[J].Applied Mathematics and Mechanics(English Edition),2007,28(7):921-929.
-
7惠小强,刘伍明.Generation of Long-Distance Entanglement in Spin System[J].Chinese Physics Letters,2008,25(7):2346-2349.
-
8JINShuo,XUEKang,等.A Realization of Yangian and Its Applications to the Bi—spin System in an External Magnetic Field[J].Communications in Theoretical Physics,2003,39(1):1-5. 被引量:1
-
9邓明.The Soliton Solutions of A (2+1)-Dimensional Integrable Equation of Classical Spin System[J].Chinese Physics Letters,2009,26(12):9-12.
-
10SHIDa-Ning.A Modified Mean Field Theory for Spin Systems with Orbital Degeneracy[J].Chinese Physics Letters,2003,20(5):735-737.
;