期刊文献+

SiC肖特基紫外光电探测器的研制 被引量:2

Study on Silicon Carbide (SiC) Schottky Ultraviolet Photodetectors
下载PDF
导出
摘要  采用微电子平面工艺,用宽禁带半导体n 4H SiC和金属Au(或Ni)形成肖特基接触,Ti、Ni、Ag合金在背底作欧姆接触,制备出Au/n 4H SiC和Ni/n 4H SiC肖特基紫外光电探测器。测试分析了这两种器件的光谱响应特性及其I V特性。其光谱响应范围均是200~400nm,室温无偏压下,Au/n 4H SiC的光谱响应峰值在310nm,光谱响应半宽是73nm,室温7V偏压下光谱响应峰值86.72mA/W,量子效率可达37.15%,Ni/n 4H SiC相应的参数分别为300nm、83nm、45.84mA/W及18.98%。Au/n 4H SiC室温下正向开启电压0.81V,Ni/n 4H SiC是0.52V,两者反向击穿电压均大于200V,反向漏电流小于1×10-10A。 With microelectronic flat process, Au/n-4H-SiC and Ni/n-4H-SiC Schottky ultraviolet(UV) photodetectors have been fabricated by using wide band semiconductor n-4H-SiC and metal Au(or Ni) to form Schottky contact, and Ti、Ni、Ag alloys to form ohmic contact on the back. The spectrum response characteristics and the I-V characteristics of the devices have been measured and analyzed. The response wavelength ranges from 200 nm to 400 nm. The response peak has been found at 310 nm for Au/n-4H-SiC at room temperature without any biased voltage, with the half width of response wavelength of 73 nm, the maximal spectrum responsivity of 86.72 mA/W and the maximal quantum efficiency of 37.15%. For Ni/n-4H-SiC, the corresponding parameters are 300 nm, 83 nm, 45.84 mA/W and 18.98%, respectively. The forward turn-on voltage of Au/n-4H-SiC is 0.81 V, and one of the Ni/n-4H-SiC is 0.52 V. The reverse breakdown voltages are both higher than 200 V, and the leakage currents are both smaller than 1×10^(-10) A.
出处 《半导体光电》 CAS CSCD 北大核心 2004年第1期25-28,共4页 Semiconductor Optoelectronics
基金 国家自然科学基金资助项目(NSFC-50132040) 中科院创新项目 (KJCX2 -SW - 0 4)
关键词 紫外探测 SIC 宽禁带 肖特基 ultraviolet detection silicon carbide wide band gap Schottky
  • 相关文献

参考文献2

  • 1施敏.半导体器件物理与工艺[M].北京:科学出版社,1992..
  • 2杨晓天 王新强 王金忠 等.ZnO基紫外探测器的制备与研究[A]..首届全国氧化锌学术会议论文摘要集[C].,2003.48.

共引文献13

同被引文献19

  • 1黄莉敏,谢家纯,梁锦,孙腾达.SiC紫外光电探测器高反压下增益性能的研究[J].微电子学,2005,35(4):357-359. 被引量:1
  • 2梁锦,谢家纯,黄莉敏,孙腾达.Au/4H-SiC肖特基UV光电二极管的温度特性[J].量子电子学报,2005,22(6):932-934. 被引量:2
  • 3Spitzer W G, Kleinman D, Walh D. Infrared properties of hexagonal silicon carbide [J]. Phys. Rev. ,1959,113(1) :127-132.
  • 4Berreman D W. Infrared absorption at longitudinal optic frequency in cubic crystal films[J]. Phys. Rev. , 1963,130(6) :2193-2198.
  • 5Stuart B H. Infrared Spectroscopy: Fundamentals and Applications[M]. John Wiley and Sons, 2004.
  • 6Hijikata Y. Composition analysis of SiO2/SiC interfaces by electron spectroscopy measurements using slope-shaped oxide films [J]. Appl. Surface Science, 2001,184 : 161-166.
  • 7Hazra S,Chakraborty S, Lai P T. Density profiles and electrical properties of thermally grown oxide nanofilms on trtype 6H-SiC[J]. Appl. Phys. Lett. , 2004,85 ( 23 ) : 5580.
  • 8Xu J P,Lai P T. Improved performance and reliability of N2, O-grown oxynitride on 6H- SiC [J]. IEEE Electron Device Lett. ,2000,21(6) :298.
  • 9Chung G Y. Improved inversiort channel mobility for 4 H-- SiC MOSFETS follwing high temperature anneals in nitric oxide[J]. IEEE Electron Device Lett., 2001, 22(4):176.
  • 10Jamet P. Effects of nitridation in gate oxides grown on 4H--SiC[J]. Appl. Phys., 2001,90(10) :5058-5063.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部