期刊文献+

两个多面体之交上的最佳逼近与保凸回归问题 被引量:1

Best Approximation from Intersection of Two Polyhedrons and Its Application in Convex Regression
下载PDF
导出
摘要 本文提出了一种求Hilbert空间中给定点x0在两个多面体K’与K”之交上的最佳逼近的算法,它把问题化归为有限次求点在K’与K”中的最佳逼近的问题.由于保凸回归问题可表述为求某点x0在两个锐锥之交上的最佳逼近问题,故结合熟知的锐锥逼近的PAVA算法即可得到保凸回归的有限算法.文章还计算了一个保凸回归问题的实例. Suppose K is the intersection of two polyhedrons K] and K' in a Hilbert space. This paper gives an algorithm for the best approximation to a given x from K, which reduces the problem to finite times of computing the best approximations from the individual K' or K'. Since by PAV Algorithm it is easy to get the best approximation to any x from an acute cone, and the problem of convex regression can be rewritten as an approximation problem from the intersection of two acute cones, by our algorithm the problem of convex regression is solved.
出处 《应用概率统计》 CSCD 北大核心 2004年第1期9-19,共11页 Chinese Journal of Applied Probability and Statistics
基金 江苏省自然科学基金资助项目.
  • 相关文献

参考文献9

  • 1史宁中.保序回归与最大似然估计[J].应用概率统计,1993,9(2):203-215. 被引量:33
  • 2骆毅.清朝人口数字的再估算[J].经济科学,1998,(1998):120-128.
  • 3Deutsch, F., The method of alternating orthogonal projection, in approximation theory, Splint Functions and Applications (S.P. Singh, ed.), Kluwer Acad. Publ., Boston, 1992, 105-121.
  • 4Dykstra, R.L., An algorithm for restricted least squares regression, J. Amer. Statist. Assoc., 78(1983), 837-842.
  • 5Boyle, J.P. & Dykstra, R.L., A method for finding projections onto the intersection of convex sets in Hilbert spaces,in advance in order restricted statistical inference ,Lecture Notes in Statistics, Springer-Verlag, 1985, 28-47.
  • 6Deutsch, F. & Hundal, H., The rate of convergence of Dykstra's cyclic projections algorithm: The polyhedral case.Numer. Funct. Anal. Optimiz., 15(1994), 537-565.
  • 7Martin, M. & Salvador, G., The validity of the " Pool-Adjacent-Violator " Algorithm, Statistics & Probability Letters, 6(1988), 143-145.
  • 8Xu, Shusheng, Successive approximate algorithm for best approximation from a polyhedron, J. Approx. Theory,93(1998), 415-433.
  • 9Braess, D., Nonlinear Approximation Theory, Springer-Verlag Berlin Heideberg, New York, 1986.

二级参考文献9

  • 1史宁中,Appl Statist,1992年
  • 2Liu W,Northeast Math,1992年
  • 3Geng Z,Appl Statist,1991年,40卷
  • 4史宁中,Chin Ann Math B,1991年
  • 5史宁中,J Am Statist Assoc,1991年,86卷,154页
  • 6Geng Z,J Jpn Soc Comp,1991年,4卷,49页
  • 7Geng Z,Appl Statist,1990年,39卷,397页
  • 8史宁中,Commun Statist,1988年,17卷,657页
  • 9史宁中,Memoir Faculty Sci Kyuzhu Univ,1988年,42卷,109页

共引文献35

同被引文献10

  • 1史宁中.保序回归与最大似然估计[J].应用概率统计,1993,9(2):203-215. 被引量:33
  • 2Dykstra R L. An algorithm for restricted least squares regression[ J]. J Amer Statist Assoc, 1983,78:837-842.
  • 3Boyle J P, Dykstra R L. A method for finding projections onto the intersection of convex sets in Hilbert spaces [ C ]// Advance in Order Restricted Statistical Inference. Berlin: Springer-Verlag, 1985:28-47.
  • 4Deutsch F, Hundal H. The rate of convergence of Dykstra' s cyclic projections algorithm: the polyhedral case [ J ]. Numer Funct Anal, 1994,15:537-565.
  • 5Martin M, Salvador G. The validity of the "pool-adjacent-violator"algorithm[J]. Statistics and Probability Letters, 1988,6:143-145.
  • 6XU Shu-sheng. Successive approximate algorithm for best approximation from a polyhedron[J]. J Approx Theory, 1988,93:415-433.
  • 7Deutsch F. The Method of Alternating Orthogonal Projection, in Approximation Theory, Spline Functions and Applications [ M ]. Singh S P. Boston: Kluwer Acad Publ, 1992:105-121.
  • 8Sasabuchi S, Inutsuk.a M, Kulatunga D D S. A multivariate version of isotonic regression[J]. Biometrika, 1983,70: 455- 472.
  • 9Dykstra, Robertson. An algorithm for isotonic regression for two or more independent variables[J]. Ann Statist, 198'2,10:708-716.
  • 10华一明,许树声.多面体最佳逼近的算法[J].南京大学学报(数学半年刊),2002,19(1):98-105. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部