期刊文献+

基于神经元网络的条件分位数估计的收敛速度(英文)

The Convergent Rates of Estimation of Conditional Quantiles Using Artificial Neural
下载PDF
导出
摘要 本文我们给出了基于神经元网络的随机过程的条件分位数的均方收敛速度.无论是在独立同分布情况下还是在平稳混合(α-混合β-混合)的情况下,我们都给出了相应的结果.结果与基于神经元网络的回归估计的收敛速度相同.采用的技术同Zhang(1998)一致. In this paper, we give the mean square convergence rates of conditional quantile estimators based on single hidden layer feed forward networks. Our results are formulated both for independent identically distributed (i.i.d.) random variables and for stationary mixing processes (α-mixing and β-mixing). It turns out that the rates are the same as those for regression using neural networks. We use the same techniques as in Zhang (1998).
作者 张建同
出处 《应用概率统计》 CSCD 北大核心 2004年第1期37-46,共10页 Chinese Journal of Applied Probability and Statistics
基金 Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry.
关键词 条件分位数估计 混合过程 神经元网络 收敛速度 Estimation of conditional quantiles, mixing processes, neural networks, rate of convergence.
  • 相关文献

参考文献18

  • 1Bahadur, R.R., A note on quantiles in large samples, Ann. Math. Statist., 37(1966), 577-580.
  • 2Barron, A.R., Complexity regularization with applications to artificial neural networks, Nonparametric Functional Estimation, In G. Roussas(ed) Boston, Ma and Dordrecht, the Netherlands: Kluwer Academic Publishes, 1990,561-576.
  • 3Barron, A.R., Universal approximation bounds for superposition of a sigmoidal function, IEEE Transaction on Information Theory, 39(1993), 930-945.
  • 4Barron, A.R., Approximation and estimation bounds for artificial neural networks, Machine Learning, 14(1994),115-133.
  • 5Barron, A.R. and Cover, T.M., Minimum complexity density estimation, IEEE Transaction on Information Theory,37(1990), 1034-1054.
  • 6Bhattacharya, P.K., On an analog of regression analysis, Ann. Math. Statist., 34(1963), 1459-1473.
  • 7Bhattacharya, P.K. and Gangopadlyay, A.K., Kernel and nearest-neighbor estimation of a conditional quantile, Ann.Statist., 18(1990), 1400-1415.
  • 8Bradley, R.C., Absolute regularity and function of Markov chains, Stochastic Process. Appl., 14(1983), 67-77.
  • 9Chen, X. and White, H., Improved rates and asymptotic normality for nonparametric neural network estimators,IEEE Transaction on Information Theory, 45(1999), 682-691.
  • 10Geman, S. and Hwang, C., Nonparametric maximum likelihood estimation by the methode of sieves, Ann. Statist.,10(1982), 401-414.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部