期刊文献+

基于链图的Bayesian网结点聚集 被引量:1

Node Aggregation of Bayesian Network Based on Chain Graph
下载PDF
导出
摘要 提出了一个基于链图将Bayesian网的结点聚集算法。将Bayesian网转化为链图,将链图上等价的结点集当作一个领域并用一个新的结点来表示,修改整体结构和参数,从而完成对整个Bayesian网的修正。聚集之后的Bayesian网可以使领域之间的概率关系更清晰明显,优化Bayesian网的结构表示。 Based on chain graph, we present an algorithm to aggregate the nodes in a Bayesian network. Firstly, Bayesian network was transformed into chain graph. The relation between nodes in chain graphs partitioned nodes into some subset of nodes viewed as domains. Then, each domain was aggregated into a new node in the new Bayesian network. Finally, By refining the parameters, we constructed the Bayesian network again. This procedure make the probabilistic relation between domains more clear, and at the same time, make the structure of the Bayesian network can be optimized.
出处 《计算机应用》 CSCD 北大核心 2004年第3期62-64,共3页 journal of Computer Applications
基金 国家自然基金项目(60263006) 中国科学院计算机智能信息处理协会重点实验室项目(IIp2002 2) 云南省自然科学基金项目(2002F0063M)
关键词 BAYESIAN网 链图 聚集 Bayesian网等价类 Bayesian network chain graph aggregation equivalence class of Bayesian network structures
  • 相关文献

同被引文献11

  • 1Stuart Russell, Peter Norvig. Artificial intelligence: a modern approach [ M ]. Loden: Prentice - Hall Press, 2002.
  • 2PEARL J. Bayesian networks. Handbook of brain theoryand neural networks[ M ]. Cambridge: MIT Press, 2001.
  • 3PEARL J. Probabilistic reasoning intelligent systems: networks of plausible inference[ M ]. San Mateo, CA: Morgan Kaufmann, 1988.
  • 4HERCHERMAN D. Learning bayesian network: The combination of knowledge and statistical data[J]. Machine Learning, 1995,20(2) : 197-243.
  • 5SUZUKI J. A Construction of Bayesian Networks from database based on a MDL scheme[C]//Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, San Mateo, CA: Morgan Kaufmann, 1993,266-273.
  • 6Kurt Weichselberger. The theory of interval-probability as a unifying concept for uncertainty[C]//1^st International Symposium on Imprecise Probabilities and Their Applications , Ghent, Belgium, 1999.
  • 7Kurt Weichselberger, Thomas Gugustin. On the symbiosis of two concepts of conditional interval probability[ M ]. ISIPTA93, 2003,608-629.
  • 8HUBER P J. Robust Statistics[ M ]. New York: Wiley, 1981.
  • 9WALLEY P. Statixtical reasoning with imprecise probabilities[ M]. New York:Chapman and Hall, 1991.
  • 10Stuart Russell,Peter Norvig.人工智能-一种现代方法[M].2版.姜哲,金奕江,杨敏,等译.北京:人民邮电出版社,2004.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部