摘要
选取最低偶数维的非Riemann对称的Damek Ricci空间,即秩为5的部分八元数Heisenberg群的一维可解扩张,构造出一种14维Damek Ricci空间,它的截面曲率的上界可以达到0.
Choosing the lowest even-dimensional non-symmentric Damek-Ricci spaces. That is to say: using the solvable extemtion of rank 5 from part Octonional Henserberg group to construct 14-Demmensional non-symmetric Damek-Ricci space, its sectional curvature can get to zero.
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2004年第1期11-14,共4页
Journal of Wuhan University:Natural Science Edition