期刊文献+

基于支持向量机的曲线重建方法 被引量:7

Curve Reconstruction Based on Support Vector Machine
下载PDF
导出
摘要 基于统计学习理论 ( SLT)的支持向量机 ( SVM)在高维空间中表示复杂函数是一种有效的通用方法 ,也是一种新的、很有发展前景的机器学习算法。文中简要介绍了基于支持向量机的理论 ,并在此基础上提出了一种基于支持向量机 ( SVM)的曲线重建算法 ,最后给出了实验 ,证明了该方法的有效性。 The existing method of neural network for function approaching in curve reconstruction suffers from the shortcoming of local minimum and slow convergence rate. A curve reconstruction algorithm based on SVM theory is presented. This algorithm can improve the standardization ability of its learning machine according to the principle of minimal structure risk. This algorithm avoids the iterative operation of BP learning algorithm, so its convergence rate is faster than that of the BP algorithm. The advantages of this algorithm are that it requires less samples to reconstruct a curve and its approaching precision is higher. It ensures that the extremum is global. Simulation result shows that this algorithm is effective.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第1期33-36,共4页 Journal of Northwestern Polytechnical University
基金 航天科技创新基金 西北工业大学博士论文创新基金资助
关键词 支持向量机 曲线重建 函数拟合逼近 神经网络 统计学习理论 机器学习 Convergence of numerical methods Learning algorithms Neural networks Supports Vectors
  • 相关文献

参考文献3

二级参考文献11

  • 1[1]Vapnik V, Lerner A. Pattern Recognition using Generalized Portrait. Automation and Remote Control, 1963,24:6
  • 2[2]Kimeldorf G, Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. , 1971,33(1):82~95
  • 3[3]Wahba G. Spline Models for Observational Data(book).SLAM, CBMS-NSF Regional Conference Series, V59.1990
  • 4[4]Boser B, et al. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh. 1992
  • 5[5]Vapnik V. The Nature of Statistical Learning Theory.Springer-Verlag, New York. 1995
  • 6[6]Keerthi S S, el al. A fast iterative nearest point algorithm for support vector machine classifier design: [Technical Report No. TR-ISL-99-03]. Dept of CSA,IISC,Ranga lore, INDIA. 1999
  • 7[7]Tsuda K. Optimal Hyperplane Classifier with Adaptive Norm: [ETL technical report TR-99-9]. 1999
  • 8[8]Roobaert D, et al. View-based 3D object recognition with Support Vector Machines. In: Proc. IEEE Neural Net works for Signal Processing Workshop. 1999
  • 9[9]Pontil M, et al. On the Noise Model of Support Vector Machine Regression, CBCL Paper # 168,AI Memo # 1851, Massachusetts Institute of Technology, Cambridge. MA, October 1998
  • 10[10]Cristianini N, et al. Dynamically Adapting Kernels in Support Vector Machines Neuro COLT: [Technical Report TR-1998-017]. Royal Holloway College

共引文献2300

同被引文献83

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部