期刊文献+

基于遗传算法的SVM参数选取 被引量:23

Parameters Selection of SVM Based on Genetic Algorithm
下载PDF
导出
摘要  支持向量机(SVM)是一种非常有前景的学习机器。然而在实际应用中,SVM的参数选取问题一直没有得到很好的解决,这在很大程度上限制了它的应用。为了能够自动地获得最佳参数,提出了基于遗传算法的SVM参数选取方法。该方法首先通过分析SVM参数对其性能的影响来确定遗传算法的搜索区间,然后在该区间内对搜索的参数进行选取。将该文提出的方法应用于5个由R tsch收集的标准模式库,实验结果表明由该方法所得参数确定的SVM具有较优的识别率和较简单的结构,即具有较佳的整体性能。 Support Vector Machines (SVM) is a promising learning technique. While in practice, the problem on how to select parameters of SVM is not solved properly. In order to get the optimal parameters automatically, a new approach based on genetic algorithm was proposed, which can acquire the best parameters of SVM. This method defines the search area by analyzing the behavior of SVMs with different parameters that also have different influence on the classrate and then chooses the best parameters in the given region. The method is experimented with five benchmark repotsch, the results demonstrate that the algorithm can get the SVM with the best recognition accuracy and simple structure.
出处 《辽宁石油化工大学学报》 CAS 2004年第1期54-58,共5页 Journal of Liaoning Petrochemical University
关键词 支持向量机 SVM 参数选取 遗传算法 统计学习理论 Statistic learning theory Support vector machines Genetic algorithm Parameter selection
  • 相关文献

参考文献3

二级参考文献9

  • 1Scholkopf B,Mika S,Burges C et al.Input space vs.feature space in kernel-based methods [J].IEEE Transactions on Neural Networks, 1999; 10(5) : 1000-1017.
  • 2Duan K,Keerrthi S S,Poo A N.Evaluation of simple performance measures for turning svm hyperparameters [R].Control Division Technical Report CD-01-11 ,Department of Mechanical Engineering,National University of Singapore,2001-09.
  • 3Baudat G,Anouar F,Kemel-based methods and function appreximation[C].In:International Joint Conference on Neural Networks(IJCNN01), 2001 : 1244-1249.
  • 4Downs T,Gates K E,Masters A.Exact Simplification of Support Vector Solutions [J]Journal of Machine Learning Research,2001 ;2:293-297.
  • 5Pontil M,Verri A.Properties of Support Vector Machines[J].Neural Computation, 1997 ; 10: 955-974.
  • 6Navia-Vazquez A,Perez-Cruz F,Artes-Rodriguez A et al.Unbiased support vector classifiers,Neural Networks for Signal Processing XI[C]. In:Proceedings of the 2001 IEEE Signal Processing Society Workshop, 2001 : 183~192.
  • 7VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 8卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268

共引文献2445

同被引文献241

引证文献23

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部