摘要
从麦克斯韦方程组出发,推导了求解电磁场参量的普适变分方程,其特点是对试探函数没有边界条件的限制,便于求解非规则形状各向异性材料的电磁场边值问题,文中应用Rayleigh-Ritz法求解充等离子体金属腔的谐振特性,对矩形金属腔分析的结果与文献[3]矩量法分析结果吻合得较好;还给出了圆柱形谐振腔中准TE_(111)和准TM_(011)模式的谐振频率和品质因数随等离子体参数变化的曲线簇,它们在工业应用中具有重要的参考价值.
In this paper, a universal variational equation for solving electromagnetic boundary problems is deduced from Maxwell's equations. It has the advantage that the trial functions are not restricted by the boundary condition. So it is especially useful in solving problems of anisotropio medium of irregular geometry. The resonant characteristics of plasma-filled cavities are analysed by using the Rayleigh-Ritz method. The numerical results in the case of rectangular cavity are in agreement with those from reference [3]. Besides, the resonant frequencies and Q values of quasi-TEm and quasi-TM0u modes are calculated as the functions of plasma parameters, which are of value in the industrial applications of plasmas.
出处
《应用科学学报》
CAS
CSCD
1992年第2期113-120,共8页
Journal of Applied Sciences
基金
国家自然科学基金会的资助
关键词
变分原理
等离子体
谐振腔
电磁场
variational principle, Rayleigh-Ritz method, anisotropio medium, plasma, resonant cavity.