摘要
刚性斜桩顶部受任意力作用的位移分析可以分解为在倾斜平面xoz及其法平面yoz内受力的位移分析.xoz(或yoz)平面内的位移分析,可以用集度为未知函数X(t)(或Y(t))和Z(t)的Mindlin水平点力(平行x轴(或y轴)),垂直点力,在xoz(或yoz)平面内沿桩轴[0,L]内分布,根据边界条件,可将问题归结为Fredholm第一种积分方程.用离散的方法可获数值解.文中给出数值计算的例子.计算的精度用功的互等定理来检查,并将直桩的结果与别人的直桩结果作比较.
The analysis of displacement of rigid sloping pile under arbitrary loads at top can be decomposed into two plane systems, i. e, the inclined plane xoz and its normal plane yoz. The analysis of displacement in xoz (or yoz) plane can be done by the distribution of Mindlin's horizontal force with unknown intensity function X(t) (or Y(t)) parallel to the x-axis (or y-axis) and vertical force with unknown intensity function Z(t) (for xoz plane only) along the axis of the pile in [0. L],then,the problem, according to the boundary conditions, is reduced to Fredholm integral equations of the first kind. Numerical solution can be obtained by discrete method. Numerical examples are given. The accuracy of calculation is checked by the reciprocal theorem of work, and the result of vertical pile is compared with other's.
出处
《应用力学学报》
CAS
CSCD
北大核心
1992年第4期114-123,141-142,共10页
Chinese Journal of Applied Mechanics
基金
国家自然科学基金
关键词
线载荷
积分方程法
刚性
斜桩
line-loaded integral equation method
reciprocal theorm of work