期刊文献+

解非线性最小二乘问题的ABS方法 被引量:1

The ABS Methods for Nonlinear Least Squares Problems
下载PDF
导出
摘要 在本文中,基于解非线性方程组的ABS方法的思想,我们对非线性最小二乘问题建立了一类新的算法。在类似于Gauss-Newton法的收敛条件下,我们证明了算法的局部收敛性。此外,在对算法结构进行深入分析的基础上,我们将新算法转化为一种近似Gauss-Newton法。并建立了它的Kantorovich型收敛定理。数值结果表明ABS算法是有效的,且在一定程度上优越于Gauss-Newton法。 In this paper, based on the idea of the ABS methods for solving systems of nonlinear equations, we establish a new class of algorithms for nonlinear least squares problems. The local convergence of the new algorithm are proved under the similar conditions as the Gauss-Newton method. Moreover, based on a careful analysis of the algorithm, structure, we convert the new algorithm into an approximate GaussNewton method, and establish the Kantorovich type Convergence theorem. The numerical results implies that the ABS method are satisfactory and superior to the Gauss-Newton method in certain extents.
作者 黄志坚
出处 《应用数学与计算数学学报》 1992年第1期75-85,共11页 Communication on Applied Mathematics and Computation
  • 相关文献

参考文献2

  • 1József Abaffy,Aurél Galántai,Emilio Spedicato. The local convergence of ABS methods for nonlinear algebraic equations[J] 1987,Numerische Mathematik(4):429~439
  • 2Dr. I. Moret. On the behaviour of approximate Newton methods[J] 1986,Computing(3):185~193

同被引文献1

  • 1[]奥特加(J·M·Ortega),莱因博尔特(W·C·Rheinbolbt) 著,朱季纳.多元非线性方程组迭代解法[M]科学出版社,1983.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部