期刊文献+

基于特征相关网格的不连续Galerkin法 被引量:1

The Discontinuous GaIerkin Method on the Characteristic ReIated Mesh
下载PDF
导出
摘要 不连续Galerkin法是求解一阶双曲方程的有效方法,然而其解的逼近能否达到丰满阶,(特别是在解不连续的情况下),逼近解的收敛性能否得到保证是理论上尚未解决的问题。针对上述问题,本文提出了特征相关网格,并将其用于不连续的Galerkin法。理论分析和计算结果表明,上述方法可将已有的解的L_2误差估计提高半阶。 The discontinuous Galerkin method is a valid algorithm for the hyperbolic equation of the first order. But there are some problems to be solved, such as the optimal error estimate and the convergence for the discontinuous solution. In this paper, a characteristic related mesh is constructed, and is used for the discontinuous Galerkin method. It is shown by the theoretic analysis and calculation results that the optimal error estimate can be achieved, and the L_2 error can be O(h^(1/2)) accuracy even though the exact solution has some gaps.
出处 《应用数学与计算数学学报》 1992年第2期76-83,共8页 Communication on Applied Mathematics and Computation
  • 相关文献

同被引文献16

  • 1Mekchay K,Nochetto R H. Convergence of adaptive finite element methods for general second order linear elliptic PDEs[J].SIAM Journal on Numerical Analysis,2005.1803-1827.doi:10.1177/0269216310373165.
  • 2Yan N N.Superconvergence Analysis and A Posteriori Error Estimation in Finite Element Methods[M]北京:科学出版社,2008.
  • 3Houston P,Rannacher R,Siili E. A posteriori error analysis for Stabilized finite element approximations of transport problcms[J].Computer Methods in Applied Mechanics and Engineering,2000,(11-12):1483-1508.doi:10.1016/S0045-7825(00)00174-2.
  • 4Houston P,Siili E. hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems[J].SIAM Journal on Scientific Computing,2001.1226-1252.doi:10.1137/S1064827500378799.
  • 5Burnman E. A posteriori error estimation for interior penalty finite element approximations of the advection-reaction equation[J].SIAM Journal on Numerical Analysis,2009.3584-3670.
  • 6Sangalli G. Robust a posteriori estimators for advection-diffusion-reaction problems[J].Mathematics of Computation,2008,(261):41-70.doi:10.1090/S0025-5718-07-02018-2.
  • 7Braess D,Verfiirth R. A posteriori error estimators for the Raviart-Thomas element[J].SIAM Journal on Numerical Analysis,1996.2431-2444.doi:10.1137/S0036142994264079.
  • 8Friedrichs K. Symmetric positive linear differential equations[J].Communications on Pure and Applied Mathematics,1958.333-418.doi:10.1002/cpa.3160110306.
  • 9Reed W H,Hill T R. Triangular mesh methods for neutron transport equation Tech.Report LA-Ur-73-479[R].Los Alamos Scientific Laboratory,1973.
  • 10Lesaint P,Raviart R A. On a finite element method for solving the neutron transport equation[A].New York:Academic Press,Inc,1974.89-145.doi:10.3168/jds.2010-3386.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部