摘要
在综合考虑入侵检测分类引擎对异常和正常记录整体预测能力的基础上,提出了一种与测试和目标审计记录集中的异常记录分布无关的预测精度度量方法。该度量方法消除了当前评估规范存在的缺陷,能够确保预测精度就是实际入侵检测时的泛化精度。
A new measurement method used for predicting accuracy of classification engines in the intrusion detection system is proposed on the basis of integrated consideration to the predictive ability of classification engines to normal and abnormal records. The proposed measurement is independent of the distribution of abnormal records in test and real audit sets and completely eliminates deficiencies of the current criterions. The predictive accuracy is assuredly the generalization accuracy in the actual intrusion detection.
出处
《计算机工程》
CAS
CSCD
北大核心
2004年第4期102-103,178,共3页
Computer Engineering
关键词
入侵检测
分类引擎
评估精度
泛化精度
度量规范
Intrusion detection
Classification engine
Evaluation accuracy
Generalization accuracy
Measurement criterion