期刊文献+

入侵检测分类引擎预测精度度量方法 被引量:1

A New Measurement of Prediction Accuracy for Classification Engines in Intrusion Detection
下载PDF
导出
摘要 在综合考虑入侵检测分类引擎对异常和正常记录整体预测能力的基础上,提出了一种与测试和目标审计记录集中的异常记录分布无关的预测精度度量方法。该度量方法消除了当前评估规范存在的缺陷,能够确保预测精度就是实际入侵检测时的泛化精度。 A new measurement method used for predicting accuracy of classification engines in the intrusion detection system is proposed on the basis of integrated consideration to the predictive ability of classification engines to normal and abnormal records. The proposed measurement is independent of the distribution of abnormal records in test and real audit sets and completely eliminates deficiencies of the current criterions. The predictive accuracy is assuredly the generalization accuracy in the actual intrusion detection.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第4期102-103,178,共3页 Computer Engineering
关键词 入侵检测 分类引擎 评估精度 泛化精度 度量规范 Intrusion detection Classification engine Evaluation accuracy Generalization accuracy Measurement criterion
  • 相关文献

参考文献3

  • 1[1]Lee W,Stolfo S,Mok K W.Data Mining Framework for Building Intrusion Detection Model[C].In:Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, 1999:120-132
  • 2[2]Lippmann R, Haines J W,Fried D J,et al. The 1999 DARPA Off-line Intrusion Detection Evaluation[J].Computer Network, 2000,34:579-595
  • 3[3]Emam K.The Predictive Validity Criterion for Evaluating Binary Classifiers[C].ln:Proceedings of the Fifth Inte rnational Symposium on Software Metrics,1998:235-244

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部