期刊文献+

Boyd和Wong映象与Banach压缩映象原理的等价性 被引量:1

Equivalence Between Boyd and Wong's Fixed Piont Theorem And Banach's Contraction Mapping Principle
下载PDF
导出
摘要 给出了Boyd和Wong映象不动点定理与Banach压缩映象原理在两个相当弱的条件下的等价性,Banach压缩映象原理在理论及应用上的优点是众所周知的,因此,压缩映射等价性的研究在数学理论上有着极其重要的作用。 If the space is compact one or the function is monotone non-decreasing,the equivalence between Boyd and Wong's fixed point theorem and Banach's contraction mapping principle is proved.As we all know, Banach's contraction mapping principle is very important in theory and application, so the research of equivalence between the two principle is important too.
出处 《河南科技大学学报(自然科学版)》 CAS 2004年第1期90-92,共3页 Journal of Henan University of Science And Technology:Natural Science
基金 河南省教育厅自然科学基础研究基金资助项目(2003110003)
  • 相关文献

参考文献1

二级参考文献5

  • 1Richard Bellman.Dynamic Programming[M].New York:Academic Press,1957.
  • 2Bhakta P C. Sumitra Mitra.Some Existence Theorems for Functional Equations Arising in Dynamic Programming[J]. J Math Anal Appl,1984,98:348-362.
  • 3Ortega J.The Newton-Kantorovich Theorem[J]. Amer Aath Monthly, 1968, 75: 658-660.
  • 4Rheinboldt W. A Unified Convergence Theory for a Class Iterative Prograss[J]. SIAMJ Numer Anal, 1968,5:42-63.
  • 5Boyd D W ,Wong J S W. On Nonlinear Contractions[J]. Proc Amer Math,Soc,1969,20:458-464.

同被引文献7

  • 1骆道忠.关于一类无下界函数的变分问题的一个注记[J].数学研究,2005,38(4):383-385. 被引量:4
  • 2Ekeland I. On. the Variational Principle[ J]. Math Appl, 1974, (47) :324 -353.
  • 3Borwein J, Preiss D. A Smooth Variational Principle with Applications to Subdifferentiability and to Differentiability of Convex Functions [ J ]. Trans Amer Math Soc, 1987,303 : 517 - 527.
  • 4Deville R, Godefroy G, Zizler V E. A Smooth Variational Principle with Applications to Hamilton-Jacobi Equations in Infinite Dimensions [ J ]. Funct Anal, 1993,111 : 197 - 212.
  • 5Qiu Jinghui. The Density of Extremal Points in Ekeland' Variational Principle [ J ]. Math Anal Appl,2007 ,328 :946 -957.
  • 6Marian Fabian, Catherine Finet. On Stegall' s Smooth Variational Principle [ J ]. Nonlinear Analysis,2007,66:565 - 570.
  • 7Phelps R R. Convex Functions, Monotone Operators and Differentiability [ M ]//Lecture Notes in Mathematics. Berlin / New York : Springer-Verlag, 1993.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部