期刊文献+

非自治线性差分方程全局吸引性中的若干问题 被引量:3

原文传递
导出
摘要 旨在解决非自治差分方程xn+1-xn+Pnxn-kn=0,n∈Z(0)零解全局吸引性的若干问题,其中{Pn}是非负实数序列,{kn}是非负整数序列,并且当n→∞时,n-kn→∞.
机构地区 广州大学理学院
出处 《中国科学(A辑)》 CSCD 北大核心 2004年第1期108-117,共10页 Science in China(Series A)
基金 教育部跨世纪优秀人才培养计划 高校博士学科点专项科研基金资助项目
  • 引文网络
  • 相关文献

参考文献21

  • 1[1]Agarwal R P. Difference Equations and Inequalities: Theory, Method and Applications. New York: Marcel Dekker, 2000
  • 2[2]Elaydi S N. An Introduction to Difference Equations. 2nd ed. New York: Springer-Verlag, 1999
  • 3[3]Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Oxford: Oxford University Press, 1991
  • 4[4]Kocic V LJ, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Boston: Kluwer Academic Publishers, 1993
  • 5[5]Chen M P, Yu J S. Oscillation and global attractivity in a delay logistic difference equation. J Difference Equations Appl, 1995, 1:227~237
  • 6[6]Erbe L H, Zhang B G. Oscillation of discrete analogue of delay equations. Differential and Integral Equations, 1989, 2:300~309
  • 7[7]Ladas G, Philos CH G, Sficas Y G. Sharp conditions for the oscillation of delay difference equations. J Applic Math Simulation, 1989, 2:101~109
  • 8[8]Ladas G, Qian C, Vlahos P N, et al. Stability of solutions of linear nonautonomous difference equations.Appl Anal, 1991, 41:183~191
  • 9[9]Philos CH G. Oscillation of some difference equations. Funkcialaj Ekvacioj, 1991, 34:157~172
  • 10[10]Philos CH G. Oscillation in a nonautonomous delay logistic difference equation. Proc Edinburgh Math Soc, 1992, 35:121~131

同被引文献20

  • 1李雪臣,王鸿燕.具周期系数时滞差分方程的全局渐近稳定性[J].扬州大学学报(自然科学版),2005,8(1):14-17. 被引量:1
  • 2李雪臣,亓正申.具分段常数微分方程零解的全局吸引性[J].河南师范大学学报(自然科学版),2006,34(3):166-168. 被引量:3
  • 3So J W-H, Yu J S. Global stability in a logistic equation with piecewise constant arguments[J]. H M J,1995,24:269--286.
  • 4Eduardo Lig, Manuel Pinto, Grongalo Rolledo, etal. Wright type delay differential equations with negative Schwarzian[J].Discrete and Continuous Dynamical systems, 2003,9 (2) : 309 - 321.
  • 5Hideaki Matsunaga, Tadayuki Hara, Sadahisa Sakatn. Global attractivity for a logistic equation with piecewise constant argument[J]. Nonlinear diff equ appli, 2001,8:45-52.
  • 6Shah S M, Wiener J. Advanced differential equations with piecewise constant argument deviations[J]. Internet J Math Sci, 1983,6 (4) : 671--703.
  • 7GYORI I, LADAS G, VLAHOS P N. Global attractivity in a delay difference equation [J]. Nonlinear Anal TMA, 1991, 17(5): 473-479.
  • 8SHI B, WANG Z C, YU J S. Global asymptotic stability in a nonlinear non-autonomous difference equation with delays [J]. Computes Math Appl, 1997, 33(8): 93-102.
  • 9KORDOUIS I-G E, PHILOS CH G. Oscillations of neutral difference equations with periodic coefficients [J].Computes Math Appl, 1997, 33(8): 11-27.
  • 10KOCIC V L J, LADAS G. Global behavior of nonlinear difference equations of higher order with application[M]. Boston: Kluwer Academic Publishers, 1993.

引证文献3

二级引证文献2

;
使用帮助 返回顶部