期刊文献+

求解带均衡约束数学规划问题的一个连续化方法 被引量:4

A CONTINUATION METHOD FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS
原文传递
导出
摘要 In this paper, a continuation method for mathematical programs with equilibrium constraints (MPEC) is proposed. By using the KKT conditions for the variational inequality constraints, the MPEC is firstly reformulated as a nonsmooth constrained optimization problem, then we solve a sequence of smooth perturbation problems, which progressively approximate the nonsmooth problem, and study the convergence of the proposed method. Numerical results showing feasibility of the approach are given. In this paper, a continuation method for mathematical programs with equilibrium constraints (MPEC) is proposed. By using the KKT conditions for the vari-ational inequality constraints, the MPEC is firstly reformulated as a nonsmooth constrained optimization problem, then we solve a sequence of smooth perturbation problems, which progressively approximate the nonsmooth problem, and study the convergence of the proposed method. Numerical results showing feasibility of the approach are given.
作者 李飞 徐成贤
出处 《计算数学》 CSCD 北大核心 2004年第1期3-12,共10页 Mathematica Numerica Sinica
关键词 均衡约束 数学规划 变分不等式 光滑扰动 收敛性 KKT条件 Variational inequality constraint, KKT conditions, nonsmooth problem, smooth perturbation problem, convergence
  • 相关文献

同被引文献42

  • 1OUTRATA J, ZOWE J. A Numerical Approach to Optimization Problems with Variational Inequality Constraints[J]. Mathematical Programming, 1985,68 : 105-130.
  • 2LUO Z Q,PANG J S,RALPH D,WU S Q. Exact Penalization and Statonary Conditions of Mathematical Programs with Equilibrium Constraints[J]. Mathematical Programming ,1996,75 : 19-76.
  • 3QUTRATA J, KOCVARE M, ZOWE J. Nonsmooth Approach to Optimization Problems with Equilibrium Consraints [M]. Netherlands : Kluwer Academic Publishers, 1998.
  • 4JIAN Jin-bao,LI Jian-ling,MO Xing-de. A Strongly and Superlinearly Convergent SQP Algorthm for Optimization Problems with Linear Complementarity Constraints[J]. Applied Mathematics Optimization, 2005,54 : 17- 46.
  • 5FACCHINEI F,JIANG H Y, QI L. A Smoothing Method for Mathematical Programs with Equilibrium Constraints[J] .Mathematical Programming, 1999,85 : 107-134.
  • 6FUKUSHIMA M, LUO Z Q, PANG J. A Globally Convergent Sequent Quadratic Programming Algorithm for Mathemat- ical Programs with Linear Complementarity Constraints[J]. Computational Optimization and Applications, 1998,10:5- 34.
  • 7YIN Hong-xia,ZHANG Jian-zhong. Global Convergence of a Smooth Approximation method for Mathematical Programs with Complementarity Constraints[J]. Math Meth Oper Res, 2006,64 : 255-269.
  • 8PENG J, LIN Z. A Non-interior Continuation Method for Generalized Linear Complementarity problems[J]. Mathematical Programming, 1999,86 : 533-563.
  • 9MA C F,LIANG G P. A New Successive Approximation Damped Newton Method for Nonlinear Complementarity Problems[J]. Journal of Mathematical Research and Exposition ,2003,23 : 1- 6.
  • 10Luo Z Q, Pang J S, Ralph D, et al. Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints[J]. Mathematical Programming, 1996,75( 1 ) : 19-76.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部