期刊文献+

解大规模非对称线性方程组的Lanczos方法和精化Lanczos方法 被引量:3

A LANCZOS METHOD AND A REFINED LANCZOS METHOD FOR LARGE UNSYMMETRIC LINEAR SYSTEMS
原文传递
导出
摘要 A large unsymmetric linear system problem is transformed into the problem of computing the eigenvector of a large symmetric nonnegative definite matrix associated with the eigenvalue zero, i.e., the computation of the elgenvector of the cross-product matrix of an augmented matrix associated with the eigenvalue zero. The standard Lanczos method and an improved refined Lanczos method are proposed that compute approximate eigenvectors and return approximate solutions of the linear system. An implicitly restarted Lanczos algorithm and its refined version are developed. Theoretical analysis and numerical experiments show the refined method is better than the standard one. If the large matrix has small eigenvalues, the two new algorithms are much faster than the unpreconditioned restarted GMRES. A large unsymmetric linear system problem is transformed into the problem of computing the eigenvector of a large symmetric nonnegative definite matrix associated with the eigenvalue zero, i.e., the computation of the eigenvector of the cross-product matrix of an augmented matrix associated with the eigenvalue zero. The standard Lanczos method and an improved refined Lanczos method are proposed that compute approximate eigenvectors and return approximate solutions of the linear system. An implicitly restarted Lanczos algorithm and its refined version are developed. Theoretical analysis and numerical experiments show the refined method is better than the standard one. If the large matrix has small eigenvalues, the two new algorithms are much faster than the unpreconditioned restarted GMRES.
出处 《数值计算与计算机应用》 CSCD 北大核心 2004年第1期48-59,共12页 Journal on Numerical Methods and Computer Applications
基金 国家重点基础研究专项基金(G1999032805)
关键词 非对称线性方程组 Lanczos法 增广矩阵 奇异向量 特征值 数值计算 orthogonal projection, refined projection, Ritz value, Ritz vector, refined vector, Lanczos method, implicit restart
  • 相关文献

参考文献10

  • 1[1]Z. Bai, R. Barret, D. Day, J. Demmel and J. Dongarra, Test matrix collection for non-Hermitian eigenvalue problems, Technical Report CS-97-355, University of Tennessee, Knoxville, 1997. LAPACK Note #123. Data available at http://math.nist.gov/MarketMatrix.
  • 2[2]I. S. Duff, R. G. Grimes and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math. Soft.,15 (1989) 1-14.
  • 3[3]G. H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, 1996.
  • 4[4]Z. Jia, The convergence of generalized Lanczos methods for large unsymmetric eigenproblems,SIAM J. Matrix Anal. Appl., 16 (1995) 843-862.
  • 5[5]Z. Jia, Composite orthogonal projection methods for large eigenproblems, Science in China (Series A), 42 (1999) 577-585.
  • 6[6]Z. Jia, Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl., 287 (1999) 191-214.
  • 7[7]Z. Jia, A theoretical comparison of two classes of projection methods,已投稿.
  • 8[8]Z. Jia and G. W. Stewart, An analysis of the Rayleigh-Ritz method for approximating eigenspaces,Math. Comput., 70 (2001) 637-647.
  • 9[9]B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.
  • 10[10]D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J.Matrix Anal. Appl., 13 (1992) 357-385.

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部