期刊文献+

诱导算子与UMT整环(英文) 被引量:18

On Induced Operations and UMT-domains
下载PDF
导出
摘要 设R T是整环扩张,定义了T上的由R的w 算子所诱导的星型算子wR,并给出了wR 乘法整环的特征.也讨论了环的w 整相关理论与环的w 整闭包,证明了在w 整扩张下,环R的w 维数与环T的wR 维数的一致性.还证明了一个整环R是UMT整环当且仅当R的w 整闭包Rw是wR 乘法整环. Let RT be an extension of domains. In this paper we introduce the star-operation w_R of T induced by w-operation over R and obtain some characterizations of a w_R-multiplication domain. We discussion the w-integral dependence of an extension of rings and the w-integral closure of an extension of rings, and prove that R is a UMT-domain if and only if the w-integral closure R^w of R is a w_R-multiplication domain on the star-operation w of R^w induced by the w-operation of R.
作者 王芳贵
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第1期1-9,共9页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金 (1 0 2 71 0 52 ) 四川省科技厅应用基础研究基金资助项目
关键词 GV-理想 ω-理想 UMT-整环 GV-ideal w-ideal PVMD UMT-domain
  • 相关文献

参考文献14

  • 1[1]Houston E, Zafrullah M. On t-invertibility II[J]. Comm Algebra,1989,17:1955~1969.
  • 2[2]Houston E, Malik S B, Mott J. Characterizations of *-multiplication domains[J]. Canad Math Bull,1984,27:48~52.
  • 3[3]Kaplansky I. Commutative Rings[M]. Chicago:University of Chicago Press,1974.
  • 4[4]Wang F G, McCasland R L. On strong Mori domains[J]. J Pure Appl Algebra,1999,135:155~165.
  • 5[5]Dobbs D, Houston E, Lucas T, et al. t-Linked overrings and Prüfer v-multiplication domains[J]. Comm Algebra,1989,17:2835~2852.
  • 6[6]Anderson D F, Houston E G, Zafrullah M. Pseudo-integrality[J]. Canad Math Bull,1991,34:15~22.
  • 7[7]Dobbs D, Houston E, Lucas T, et al. On t-linked overrings[J]. Comm Algebra,1992,20:1463~1488.
  • 8[8]Gilmer R. Multiplicative Ideal Theory[M]. New York:Marcel Dekker Inc,1972.
  • 9[9]Matsumura H. Commutative Ring Theory[M]. New York:Cambridge University Press,1989.
  • 10[10]Hedstrom J R, Houston E. Some remarks on star-operations[J]. J Pure Appl Algebra,1980,18:37~44.

同被引文献156

引证文献18

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部