期刊文献+

线性系统的模态解耦控制 被引量:1

MODES DECOUPLING CONTROL FOR LINEAR SYSTEMS
下载PDF
导出
摘要 本文在文[5]的基础上进一步提出了有关线性系统模态解耦的一些新概念,并给出了利用状态反馈实现线性系统模态解耦的充要条件和新算法。新算法计算量小,简单有效,且可以给出实现模态解耦的反馈律及其对应的闭环特征向量矩阵的全体。通过对文[5]中的非旋转式导弹系统进行模态解耦设计,说明了算法的应用过程及其简单、有效性。 Some new concepts about modes decoupling for linear systems are proposed on the basis of ref. [5], necessary and sufficient conditions as well as a simple and effective algorithm for modes decoupling control of linear systems via state feedback are also obtained. The obtained algorithm requires less computational work, and can give all the feedback laws which realize the modes decoupling reqirement, together with the eigenvector matrices of the corresponging closed loop systems. By using this algorithm, the modes decoupling control design for the unrotating missile which was studied in [5] is carried out. The designing process shows the simplicity and the effect of the approach.
机构地区 哈尔滨工业大学
出处 《宇航学报》 EI CAS CSCD 北大核心 1992年第2期7-13,共7页 Journal of Astronautics
关键词 线性系统 状态反馈 模态解耦 导弹 Linear systems, State feedback, Modes decoupling, Eigenstructure,Missile system.
  • 相关文献

参考文献7

二级参考文献14

  • 1张福恩,自动化学报,1986年,12卷,2期
  • 2刘国荣.干扰解耦和极点配置组合问题的研究[J]控制理论与应用,1986(02).
  • 3张福恩.状态反馈极点配置的直接方法[J]自动化学报,1986(02).
  • 4王世林,许可康,韩京清.干扰解耦问题[J]自动化学报,1982(04).
  • 5[日]须田信英等 著,曹长修.自动控制中的矩阵理论[M]科学出版社,1979.
  • 6杨亚光,吕勇哉.鲁棒系统设计的时域方法[J]控制理论与应用,1988(04).
  • 7施颂椒,王跃云.基于特征结构配置的最小灵敏度控制器设计[J]自动化学报,1988(02).
  • 8邱海明.高阶系统最小灵敏度极点指定[J]控制与决策,1986(02).
  • 9张福恩.状态反馈极点配置的直接方法[J]自动化学报,1986(02).
  • 10施颂椒,王跃云.基于特征结构配置的最小灵敏度控制器设计[J]自动化学报,1988(02).

共引文献36

同被引文献12

  • 1段广仁,王国胜.矩阵方程EVJ^2+AVJ+CV=BW的两种解析通解[J].哈尔滨工业大学学报,2005,37(1):1-4. 被引量:16
  • 2王国胜,张春巍,段广仁,欧进萍.基于特征结构配置的结构鲁棒控制算法及仿真[J].地震工程与工程振动,2005,25(2):125-129. 被引量:3
  • 3王国胜,吕强,梁冰,段广仁.不确定二阶动力学系统的鲁棒特征结构配置设计[J].系统工程与电子技术,2006,28(2):271-274. 被引量:6
  • 4[3]Wilson R F,Cloutier J R,Yedavalli R K.Lyapunov Constrainted Eigenstructure Assignment for the Design of Robust Mode-decoupled Roll-yaw Missile Autopilots[C]∥ IEEE Conference on Control Applications.Dayton:IEEE,1992:994-999.
  • 5[4]Chouaib I,Pradin B.On Mode Decoupling and Minimum Sensitivity by Eigenstructure Assignment[C]∥ Proceedings 7th Mediterditerranean Electrotechnical Conference.Antalya:IEEE,1994:663-666.
  • 6[5]Duan G R,Liu G P.Complete Parametric Approach for Eigenstructure Assignment in a Class of Second-order Linear Systems[J].Automatica,2002,38(4):725-729.
  • 7[6]Duan G R,Wang G S,Liu G P.Eigenstructure Assignment in a Class of Second-order Linear Systems:A Complete Parametric Approach[C]∥ Proceedings of CACSCUK.Manchester:IEE,2002:89-96.
  • 8[8]Wang G S,Duan G R.Robust Pole Assignment via P-D Feedback in a Class of Second-order Dynamic Systems[C]∥ International Conference of Automation,Robots and Computer Vision.New York:IEEE,2004:1152-1156.
  • 9[9]Wang G S,Liang B,Duan G R.Reconfiguring Second-order Dynamic Systems via State Feedback Eigenstructure Assignment[J].International Journal of Control,Automation.and Systems,2005,3(1):109-116.
  • 10[10]Wang G S,Lü Q,Duan G R.Design of Reconfiguring Control Systems via State Feedback Eigenstructure Assignment[J].International Journal of Information Technology,2005,11(7):61-70.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部