摘要
统计参数映射在某种程度上依赖于广义线性模型和高斯场理论。广义线性模型的缺陷在于这些假设不能很好地表示fMRI数据,并且脑活动分布模式和血液动力学模型也不能由广义线性模型回归方程来恰如其分地模拟。而独立成分分析不能够提供每一独立成分激活区的显著性估计,这使得实验者不能够很好地解释所获得的结果。提出一种将SPM和ICA技术进行融合的方法,此方法可以将ICA自身的某些优势和GLM的假设检验方法结合起来,互相取长补短。实验结果证明了这种方法在探测由运动任务所产生的激活区方面是有效的。
Statistical parametric mapping (SPM) depends on the general linear model(GLM) and the theory of Gaussian fields to some extent. But the disadvantages of the GLM are related to the fact that these assumptions outlined do not fairly represent the fMRI data. Also, hemodynamics and distributed patterns of the brain activity may not be well modeled by the GLM regression framework. While, the independent component analysis(ICA) does not provide the investigator with a significance estimate for each component activation, which may discourage experimenters from attempting to interpret the results. The paper proposes a method which combines some of the benefits of ICA with the hypothesistesting approach of the SPM. Experimental results demonstrate that the proposed method is effective for detecting the activations resulting from a motor task.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2003年第3期96-99,共4页
Journal of National University of Defense Technology
基金
国家973预研专项基金