期刊文献+

炭化温度对飞焦和煤混合原料制成型活性焦性能的影响(英文) 被引量:3

EFFECTS OF CARBONIZATION TEMPERATURE ON THE PROPERTIES OF FORMED ACTIVE COKE FROM FLY CHAR AND COAL
下载PDF
导出
摘要 以中国科学院山西煤炭化学研究所灰熔聚流化床粉煤气化工业示范试验二旋飞焦为部分原料,再配以原煤和煤焦油混合,试制了烟气脱硫用成型活性焦。实验表明:炭化温度的高低对成型活性焦的性能有很大的影响,其中对强度的影响尤为密切。为了得到较高的耐磨、耐压强度,在满足其它性能的前提下,炭化温度最佳的范围为600℃~700℃,在此条件下制得的活性焦其强度大于95%,硫容为80mg/g,符合活性焦的商业使用要求。同时研究了炭化温度对活性焦孔结构发展的影响。并对活性焦进行了孔结构的表征,探讨了孔结构和二氧化硫吸附性能的关系。 A series of formed active cokes for SO_2 removal in flue gas was prepared from fly char and its parent coal with two steps: the carbonization of raw briquette in N_2 flow at different temperatures between 400℃ and 700℃ and the activation of the carbonized product at 900℃ in a stream of N_2+H_2O. The effects of carbonization temperature on pore properties (BET surface area, micropore area and volume, pore size distribution) and other physical and chemical properties (yield, mechanical strength, sulfur capacity and iodine value) were investigated. The results show that the carbonization temperature plays an important role in preparation process. Among those parameters, the mechanical strength is close related to carbonization temperature, which increases with increasing carbonization temperature, whereas there is little effect of temperature on gross yield. In addition, other parameters (BET area, sulfur capacity, etc.) decrease with increasing carbonization temperature with different degree. In the meantime, pore size distribution of active coke produced at lower carbonization temperature is relatively reasonable. The optimal carbonization temperature range is 600℃~700℃, under which the prepared active coke exhibits the properties comparable to those commercial ones and could meet the requirements for desulphurization.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2004年第1期1-6,共6页 Journal of Fuel Chemistry and Technology
基金 国家自然科学基金 (90 2 1 0 0 0 2 )~~
关键词 炭化温度 活性焦 脱硫 吸附 active coke carbonization temperature SO_2 removal adsorption
  • 相关文献

参考文献15

  • 1[1]LU G Q, DO D D. Preparation of economical sorbonts for SO2 and NOx removal using coal washery reject[J]. Carbon, 1991, 29(2):207-313.
  • 2[2]Knoblauch K, Richter E, Juntgen H. Application of active coke in processes of SO2 and NOx removal from flue gases[J]. Fuel, 1981, 60(9): 832-838.
  • 3[3]Juntgen H. New applications for carbonaceous adsorbents[J]. Carbon, 1977, 15(5):273-283.
  • 4[4]Carrasco-Marin F, Ultrera-Hidalgo E, Rivera-Utrilla J, et al. Adsorption of SO2 in flowing air onto activated carbons from olive stones[J]. Fuel, 1992, 71(5):575-578.
  • 5[5]Rubio B, Izquierdo M T, Mastral A M. Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars[J]. Carbon, 1998, 36(2): 263-268.
  • 6[6]Fang Y T, Huang J J, Wang Y. Experiment and mathematical modeling of a bench-scale circulating fluidized bed gasifier[J]. Fuel Process Technol, , 2001, 69(1):29-44.
  • 7[7]Rubio B, Izquierdo M T, Segura E. Effect of binder addition on the mechanical and physicochemical properties of low rank coal char briquettes[J]. Carbon, 1999, 37(11): 1833-1841.
  • 8[8]Watson Taylor J. Compaction and cementing of char particles with a tar-derived binder[J]. Fuel, 1988, 67(11):1495-1501.
  • 9[9]Chang H Y, Yun H P, Chong R P. Effects of pre-carbonization on porosity development of activated carbons from rice straw[J]. Carbon, 2001, 39(4):559-567.
  • 10[10]Wigman T. Industrial aspects of production and use of activated carbons[J]. Carbon, 1989, 27(1): 13-22.

同被引文献11

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部