期刊文献+

辅助有机胺对介孔分子筛MCM-41合成及其性质的影响 被引量:8

EFFECTS OF AUXILIARY ORGANIC AMINE ON THE SYNTHESIS AND PORE STRUCTURE PROPERTIES OF MCM-41 MESOPOROUS MOLECULAR SIEVES
下载PDF
导出
摘要 采用阳离子表面活性剂十六烷基三甲基溴化铵为模板剂、硫酸铝为铝源、硅溶胶为硅源,分别使用中等链长的有机胺和正己烷作为辅助添加剂,用水热晶化法在碱性介质中合成了介孔分子筛MCM 41,通过XRD、N2吸附 脱附、SEM测试手段对得到的样品进行了对比表征分析。实验结果表明,除三乙胺外,向反应体系中加入适量的三正丙胺、三正丁基胺、三正辛胺和二异丁胺后,均能够使介孔MCM 41的d100值和孔径增大,且具有较大的BET表面积(>1000m2/g)和孔容(>1cm3/g);加入正己烷后,也可以使得MCM 41孔径变大,但是和加入有机胺相比较,合成的样品具有较小的BET表面积(887 3m2/g)和孔容(0 81cm3/g)。 Using cationic surfactant of cetyltrimethylammonium bromide as templating agent, silicasol as silica source and aluminum sulfate as aluminum source, and auxiliary organic amines and hexane as additives respectively, the mesoporous molecular sieves MCM-41 were synthesized by hydrothermal method in basic media. The synthesized samples were characterized by XRD, N_2 adsorption-desorption, and SEM. The experimental results show that, with the exception of triethylamine, after adding tri-n-propylamine, diisobutylamine tri-n-butylamine, tri-n-octylamine to reaction system respectively, the mesoporous MCM-41 samples attained have larger pore diameter compared with MCM-41 prepared without additives and have higher BET surface area and larger pore volume. Using hexane as auxiliary additive also can enlarge the MCM-41 pore diameter, but the sample have lower BET surface area (887.3m^2/g) and pore volume (0.81cm^3/g).
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2004年第1期78-82,共5页 Journal of Fuel Chemistry and Technology
基金 国家自然科学基金(20233010)~~
关键词 介孔分子筛 MCM-41 合成 添加剂 表征 mesoporous molecular sieve MCM-41 synthesis additive characteristic
  • 相关文献

参考文献9

  • 1[1]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid-crystal template mechanism[J]. J Am Chem Soc, 1992, 114(27):10834-10843.
  • 2[2]Kresge C T, Leonowicz M E, Roth W J, et al . Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism[J]. Nature, 1992, 359(6397):710-712.
  • 3[4]Jie-Bin Pang, Kun-Yuan Qiu, Yen Wei. A novel nonsurfactant pathway to hydrothermally stable mesoporous silica materials[J]. Microporous Mesoporous Mater, 2000, 40(1): 299-304.
  • 4[7]Blin J L, Becue A, Pauwels B, et al. Non-ionic surfactant (C13EOm,m=6,12 and 18) for large pore mesoporous molecular sieves preparation[J]. Microporous Mesoporous Mater, 2001, 44(1): 41-51.
  • 5[8]Sayari A, Kruk M, Jaroniec M, et al. New approaches to pore size engineering of mesoporous silicates[J]. Adv Mater, 1998, 10(16):1376-1385.
  • 6[9]Abdelhamid Sayari, Yong Yang. Expanding the pore size of MCM-41 silicas: use of amines as expanders in direct synthesis and post-synthesis procedures[J]. J Phys Chem B, 1999, 103(18):3651-3658.
  • 7[10]Blin J L, Su B L. Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders[J]. Langmuir, 2002, 18(13): 5303-5308.
  • 8[11]Blin J L, Otjacques C, Herrier G, et al. Pore size engineering of mesoporous silicas using decane as expander[J]. Langmuir, 2000, 16(4): 4229-4236.
  • 9[12]Blin J L, Otjacques C, Herrier G, et al. Pore size engineering of mesoporous silical using alkanes as swelling agents[J]. Stud Surf Sci Catal, 2000, 129(1): 75-84.

同被引文献89

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部