期刊文献+

基于支持向量机的机械设备状态趋势预测研究 被引量:30

Research on Condition Trend Prediction of Mechanical Equipment Based on Support Vector Machine
下载PDF
导出
摘要 提出了用支持向量机对机械设备状态趋势进行预测的新方法,构造了相应的支持向量回归机,并分别用仿真数据和实际数据对其性能进行了验证.将该支持向量回归机应用于某机组振动信号的预测,采用径向基核函数和合适的参数,使该向量回归机对振动量峰峰值的单步预测误差小于2%,24步预测误差小于5%,表明该算法对机械设备的运行状态趋势具有较好的预测能力. A new method of condition trend prediction of mechanical equipment based on support vector machine was presented and the support vector regression machine was constructed. Both simulation data and actual data were used to validate the performance of this regression machine. The support vector regression machine was applied to the trend prediction of the vibration signal from machine sets. The single-step prediction error for peak-peak value of the vibration signal is less than 2% and the 24 steps prediction error is less that 5% with radial basis function (RBF) kernel function and proper parameters. These results show that the support vector regression machine has excellent performance of condition trend prediction for mechanical equipment.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第3期230-233,238,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50175087) 国家"十五"科技攻关计划资助项目(2001BA204B05).
关键词 支持向量机 回归 趋势预测 Forecasting Radial basis function networks Regression analysis Statistical methods
  • 相关文献

参考文献1

  • 1Lijuan Cao,Francis E.H Tay. Financial Forecasting Using Support Vector Machines[J] 2001,Neural Computing & Applications(2):184~192

同被引文献308

引证文献30

二级引证文献296

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部