摘要
引入了拟变分不等式解集的极小本质集的概念,并证明了每个拟变分不等式(满足一定条件)的解集至少存在一个极小本质集.作为应用,还证明了大多数(在Baire分类意义下)拟-似变分不等式问题的解集是稳定的;每个拟-似变分不等式(满足一定条件)的解集至少存在一个本质连通区.
The paper introduces the concept of minimal essential set of the solution set of quasi-variational inequality,and it is proved that there exists at least one minimal essential set of the solution set for every quasi-variational inequality (satisfying some conditions).As a consequence,it deduces that the solution sets of most quasi-variational-like inequalities (in the Baire category sense) are stable;and for any quasi-variational-like inequality (satisfying some conditions) there exists at least one essential connected component of the solution set.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2004年第1期81-88,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
广东省自然科学基金(022001)
关键词
拟变分不等式
拟-似变分不等式
极小本质集
本质连通区
quasi-variational inequality, quasi-variational-like inequality,minimal essential set,essential component