期刊文献+

岩土工程材料的数字图像有限元分析 被引量:87

DIGITAL IMAGE PROCEEDING BASED ON FINITE ELEMENT METHOD FOR GEOMATERIALS
下载PDF
导出
摘要 综合数字图像处理理论、几何矢量转换技术与有限元网格自动生成原理,提出了岩土工程材料的数字图像有限元分析方法。以岩土工程材料的图像为研究对象,先采用数字图像算法获得材料的真实细观结构;然后,通过几何矢量转换技术将二元图像的细观结构转化为矢量化的细观结构;在矢量化细观结构的基础上,再利用网格自动生成技术生成材料细观结构的有限元网格;最后,采用传统的有限元计算理论,对细观结构中的不同材料赋予相应的材料参数,从而实现了岩土工程材料的非均质力学分析,真实地反映了岩土工程材料的力学性能。以花岗岩为例,详细阐明了实现数字图像数值分析方法的整个过程。Brazilian试验的数值模拟表明,材料的细观结构对Brazilian圆盘中轴线上拉应力的分布有着明显的影响,数字图像数值分析方法可真实地实现材料的非均质研究。 This paper presents an innovative digital image processing method based on a method to examine the mechanical responses of geomaterials by taking into account the actual material inhomogeneity. The proposed method incorporates the digital image processing procedures,geometry vectorization algorithms and automatic finite element mesh generation techniques into the conventional finite element methods. Using a granitic rock as an example, the paper illustrates the innovative numerical method for mechanical analyses of rock materials. Numerical results presented in the paper show that this method can be used to calculate the mechanical responses of inhomogeneous geomaterials with high efficiency and accuracy.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2004年第6期889-897,共9页 Chinese Journal of Rock Mechanics and Engineering
基金 特别行政区政府研究基金委员会(CA99100 EG01 HKU7029102E) 香港赛马会慈善基金资助项目
关键词 岩土工程材料 数字图像 有限元分析 几何矢量化 非均质力学 numerical analysis,geomaterial,digital image,microstructure,geometry vectorization
  • 相关文献

参考文献22

  • 1李炼,李启光,徐钺,谭国焕.一种用于岩石材料微裂纹观察的复型技术[J].岩石力学与工程学报,2002,21(6):797-802. 被引量:9
  • 2Sepher K, Svec O J, Yue Z Q, et al Finite element modelling of asphalt concrete microstructure[A]. In: Localized Damge 111: Computer- Aided Assessment and Controt[C] .Southampton, Boston: Computational Mechanics Publications, 225-232.
  • 3Wang Z M, Kwan A K H, Chan H C Mesoscoplc study of concrete I: generation of random aggregate structure and finite element mesh[J].Computers & Structure, 1999, 70:533-544.
  • 4Tang C A, Liu H, Lee P K K, et al Numerical tests on micro-macro relationship of rock failure under uniaxial compression-part I: effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Science, 2000, 37(4): 555-569.
  • 5Tang C A, Tham L G, Lee P K K, et al. Numerical tests on micro-macro relationship of rock failure under uniaxial compression-part Ⅱ: constraint, slenderness and size effects[J]. International Journal of Rock Mechanics and Mining Science, 2000, 37(4): 571-583.
  • 6Li L. Microscopic study and numerical simulation of the failure process of granite[PhD Dissertation][D]. Hong Kong: Department of Civil Engineering, The University of Hong Kong, 2001.
  • 7Li L, Tham L G, Tsui Y, et al. Numerical investigation on the failure process of Hong Kong granite[A]. In: Proceedings of the 2001 ISRM International Symposium - Second Asian Rock Mechanics Symposium[C]. Beijing: [s. n.], 2001, 303-305.
  • 8Frost J D, Wright J R. Techniques and applications in civil engineering[A]. In.. Proceedings of EF/NSF Conference on Digital Image Processing[C]. Hawaii: A S C E, 1993, 139-146.
  • 9Lee H, Chou E. Survey of image processing applications in civil engineering[A]. In: Proceedings of EF/NSF Conference on Digital Image Processing: Techniques and Applications in Civil Engineering[C].Hawaii: A S C E , 1993, 203-210.
  • 10Chermant J L. Why automatic image analysis? an introduction to this issue[J]. Cement & Concrete Composites, 2001, 23:127-131.

二级参考文献33

  • 1[1]Nelson C,Wang C Y.Non-destructive observation of internal cracks in stressed rocks[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1977,14(2):103~107
  • 2[2]Potter J M.Experimental permeability studies at elevated temperature and pressure of granitic rocks[R].Los Alamos:Los Alamos Scientific Laboratory Rep.,LA-7224-T,1978
  • 3[3]Wu C C,Freiman S W,Rice R W,et al.Microstructural aspects of crack propagation in ceramics[J].J.Material Sci.,1978,13:2 659~2 670
  • 4[4]Alber M,Hauptfleisch U.Generation and visualization of micro-fractures in Carrara marble for estimating fracture toughness,fracture shear and fracture nomal stiffness[J].Int.J.Rock Mech.Min.Sci.,1999,36(8):1 065~1 071
  • 5[5]Baldridge S,Simmons G.Progresses in micro-crack decoration[R].Washington:Section of Tectonophysics,EOS,1971,52:342~342
  • 6[6]Simmons G,Todd T,Baldridge W S.Toward a quantitative relationship between elastic properties and cracks in low porosity rocks[J].Am.J.Sci.,1975,275(3):318~345
  • 7[7]Simmons G,Richter D.Microcracks in rock[A].In:Strens R G J ed.The Physics and Chemistry of Minerals and Rocks[C].London:Wiley,1976,105~137
  • 8[8]Nishiyama T,Kusuda H.Identification of pore spaces and microcracks using fluorescent resins[J].Int.J.Rock.Mech.Min.Sci.& Geomech.Abstr.,1994,31(4):369~375
  • 9[9]Kusuda H,Nishiyama T,Saito T.Observation and evaluation of microcrack propagation in granite fractured by uniaxial compression test using fluorescent resins[J].J.Soc.Mat.Sci.,Japan,1995,44(502):851~855
  • 10[10]Kim D S,McCarter M K.Quantitative assessment of extrinsic damage in rock materials[J].Rock Mech.Rock Engng.,1998,31(1):43~62

共引文献8

同被引文献1053

引证文献87

二级引证文献936

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部