期刊文献+

Er^(3+)-Yb^(3+)共掺磷酸盐玻璃放大器的大信号增益与量子效率理论分析 被引量:6

Gain and Quantum Conversion Efficiency of Er^(3+)-Yb^(3+) Codoped Phosphate Glass Amplifier Operating at Large Signal
原文传递
导出
摘要 研究大信号工作状态下的Er3 + Yb3 + 共掺磷酸盐玻璃波导放大器的增益与量子转换效率。从量子转换效率的定义出发 ,得出了增益、抽运光功率以及量子转换效率三者之间关系的解析表达式。通过数值求解大信号工作状态下的Er3 + Yb3 + 共掺系统的速率方程与光功率传输方程 ,讨论了Er3 + 浓度、Yb3 + 浓度、Yb3 + 与Er3 + 浓度比率、抽运光功率以及放大器长度等因素对量子转换效率的影响。结果表明提高Er3 + 浓度与增加放大器长度均有助于提高量子转换效率 ,高Er3 + 浓度掺杂需要相应的高Yb3 + 浓度与之相匹配以减小由于高浓度Er3 + 掺杂引起的上转换效应 ,Yb3 + 浓度的提高将降低器件的量子转换效率 ,Yb3 + Er3 + 浓度之比取 1~ 2较好。 Gain and quantum conversion efficiency(QCE) of Er 3+ Yb 3+ codoped phosphate glass waveguide amplifier at large signal operation are studied. From the definition of quantum conversion efficiency the analytical expression relating gain, pump power and quantum conversion efficiency is obtained. By solving the rate and optical power propagation equations describing the Er 3+ Yb 3+ codoped system, the effects of Er 3+ concentration, Yb 3+ concentration, the ratio of Yb 3+ to Er 3+ concentration, pump power and amplifier length on quantum conversion efficiency are discussed. It is shown that increase of Er 3+ concentration and of amplifier length can improve quantum conversion efficiency, in order to reduce up conversion caused by high Er 3+ concentration, high Er 3+ concentration must match corresponding high Yb 3+ concentration, improvement of Yb 3+ concentration reduces quantum conversion efficiency, the rate of 1~2 of Er 3+ Yb 3+ codoped concentration is available.
出处 《光学学报》 EI CAS CSCD 北大核心 2004年第3期351-355,共5页 Acta Optica Sinica
基金 国防预研基金 (5 14 0 2 0 4 0 30 3DZ0 2 )资助课题
关键词 光放大器 铒离子-镱离子掺杂 磷酸盐玻璃波导放大器 量子转换效率 抽运光功率 上转换效应 optical fiber communication technology optical amplifier Er 3+-Yb 3+ codoped phosphate glass waveguide amplifier large signal quantum conversion efficiency (QCE)
  • 相关文献

参考文献3

二级参考文献15

  • 1Song Feng Chen Xiaobo 等.-[J].中国激光,1999,26(9):790-792.
  • 2Guan Zhouguo.[D].Chengdu: University of Electronic Science and Technology of China,2002.
  • 3Chen Haiyan.[D].Chengdu:University of Electronic Science and Technology of China,2002(inChinese).
  • 4Lester C, Bjarklev A, Rasmussen T et al.. Modeling of Yb^3+-sensitized Er^3+-doped silica waveguide amplifiers.J Lightwave Technol , 1995, 13(5) :740-743.
  • 5Honkanen S, Ohtsuki T, Jiang S. High Er concentration phosphate glasses planar waveguide amplifiers. Proc SPIE, 1997, 2996:32-40.
  • 6Barbier D, Bruno P, Cassagnettes C et al.. Net gain of 27 dB with a 8. 6-cm-long Er-Yb-doped glass-planaramplifier. Opt. Fiber Commun. San Jose, California.Conf , OFC '98 Technical Digest. 45-46.
  • 7Shooshtari A, Touam T, Najafi S I. Yb^3+ Sensitized Er^3+-doped waveguide amplifiers: A theoretical approach.Proc SPIE, 2000, 3278:149-165.
  • 8Iannone C, Reichmann K C, Birk M et al.. A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers. OSA Optical Fiber Commun. (OFC) Proc , Anaheim, CA 2001. 17-22.
  • 9Wong S F, Pun E Y B, Chung P S. Er^3+-Yb^3+ codoped phosphate glass waveguide amplifier using Ag6+-Li^+ ion exchange. IEEE Photon. Technol Lett , 2002, 14 ( 1 ) :80-82.
  • 10Artemev E F, Murzin A G, Federov Y K et al.. Some characteristics of population inverion of the 4 I13/2 level of erbium-ions in ytterbium-erbium glasses. Soy. J. Ogant.Electron , 1981, 11(8):1266-1268.

共引文献40

同被引文献33

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部