期刊文献+

进位吸引子与拓扑熵 被引量:1

下载PDF
导出
摘要 Let M be a manifold (possibly with boundary), and f:M→M be continuous. Call a closed invariant set A包含M an adic attractor of f if it attracts almost all points (in the sense of Lebesgue measure) and the restriction f|A is topologically conjugate to an adic system. Such an attractor A is called n-adic if the restriction flA can be topologically conjugate the n-adic system.
出处 《Northeastern Mathematical Journal》 CSCD 2004年第1期1-4,共4页 东北数学(英文版)
  • 引文网络
  • 相关文献

参考文献7

  • 1Block L S and Coppel W A. Dynamics in one dimension, Lecture Notes in Math,1513, Springer, New York, Berlin, 1992.
  • 2Chen Fangyue, Hausdorff dimension of Feigenbaum's attractor, Dynamical Systems,Proc of the International Conference, World Scientific, Singapore, 1998, 41-45.
  • 3Devaney R. An introduction to chaotic dynamical systems, 2nd Edition, Addison-Wesley, Reading, Massachusetts, 1989.
  • 4Falconer K J. Tile geometry of fractal sets, Cambridge Univ Press, New York, 1985.
  • 5Liao Gongfu, Huang Guifeng and He Bohe, Likely limit sets of Feigenbaum's maps and their Hausdorff dimensions, Northeast. Math J, 13(1997), 349-356.
  • 6Coven E M and Keane M S. The structure of substitution minimal sets, Trans Amer Math Soc, 162(1971), 89-102.
  • 7Nitecki Z N. Maps of the interval with closed periodic set, Proc Amer Math Soc,85(1982), 451-456.

同被引文献1

引证文献1

相关主题

;
使用帮助 返回顶部