逆抽样中公共优化比的Mantel-Haenszel估计
摘要
We consider K independent 2×2 tables arising from the inverse sampling, and propose Mantel-Haenszel (M-H) estimator for the common odds ratio and the variance estimate of the estimator. The conditions for the asymptotic efficiency of this estimator are also discussed in this article.
参考文献6
-
1Mantel N and Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease, J National Cancer Institute, 22(1959), 719-748.
-
2Gart J J. The comparison of proportious: A review of significance tests, confidence intervals, and adjustments for stratificaton, Rev Int Star Inst, 39(1971), 148-169.
-
3McKinlay S M. The effect of non-zero second-order interaction on combined estimators of the odds ratio. Biometrika, 65(1978), 191-202.
-
4Tarone R E, Gart J J and Hauck W W. On the asymptotic inefficiency of certain noniterative estimators of a common relative risk or odds ratio, Biometrika, 70(1983),519-522.
-
5Guo Jianhua, Ma Yanping, Shi Ningzhong and Tai Shing Lau, Testing for homogeneity of relative differences under inverse sampling, Computational Statistics and Data Analysis,to appear.
-
6Bennett B M. On combining estimates of relative risk using the negative binomial model, Biometrical J, 23(1986), 859-862.
-
1左艳芳,吴武琴.逆抽样条件下风险差的检验[J].云南民族大学学报(自然科学版),2008,17(2):133-135.
-
2樊鸿康.关于逆抽样的相关理论与方法[J].南开大学学报(自然科学版),2003,36(4):43-49. 被引量:2
-
3杨义群.关于0-1总体的逆抽样[J].黄淮学刊(自然科学版),1995,11(3):57-59.
-
4江绍萍,段桂花,李慧敏.逆抽样条件下含结构零的2×2列联表中风险差的置信区间估计[J].统计与决策,2015,31(22):8-11.
-
5QI Yongcheng(Department of Probability and Statistics, Peking University, Beijing 100871, China).A SIMPLE ESTIMATOR FOR AN EXPONENTIAL TAIL COEFFICIENT[J].Systems Science and Mathematical Sciences,1996,9(2):151-156.
-
6陈桂景,傅权.一般截断族中半参数估计的渐近效率[J].数学学报(中文版),1992,35(6):839-852. 被引量:2
-
7江绍萍.逆抽样条件下含结构零的2×2列联表中相对差的估计[J].统计与决策,2010,26(2):14-16. 被引量:3
-
8江绍萍.逆抽样条件下配对试验中相对差的估计[J].统计与决策,2009,25(11):8-9.
-
9吴延科,田茂再.负二项抽样下风险比率的调整置信区间[J].系统科学与数学,2015,35(10):1168-1177. 被引量:1
-
10吴武琴,左艳芳,李会琼,江绍萍.逆抽样条件下相对差的估计[J].昆明理工大学学报(理工版),2009,34(5):108-111. 被引量:1