期刊文献+

有关完全正定阵的综述

A survey on completely positive matrices
下载PDF
导出
摘要 对于给定的一个n阶实方阵A,若其每一元素非负且半正定,则称为双非负矩阵.称A为完全正定阵,如果能表示成A=BB′,其中B=(bij)n×m是非负阵,m为某一正整数,B的可能最小的列数m称为A的因子分解指数。本文综合在这方面的研究进展,其中包含作者本人有关完全正定阵的一些最新结果. A doubly nonnegative matrix A is defined to be an entrywise nonnegative and positive semidefined matrix. It is called completely positive if it can be factored as A=BB′, where B is n×m entrywise nonnegative matrix and m is some positive integer. Such number m is called the cprank (or the factorization index) of A. The present paper gives a survey of the development in this research field . Some recent results concerning complete positivity are included.
机构地区 安徽大学数学系
出处 《安徽大学学报(自然科学版)》 CAS 2004年第2期1-4,共4页 Journal of Anhui University(Natural Science Edition)
关键词 完全正定阵 双非负阵 分解指数 余正矩阵 完美图 doubly nonnegative matrix copletely positive matrices factroization index copositive matrices reflect graph
  • 相关文献

参考文献6

  • 1[1]Drew J H,Johnson C R and Loewy R.Completely Positive matrices Associated with M-Matrices[J].Linear and Muctilinear Algebra,1994,37:307-310.
  • 2[2]Kaykobad M.On Nonnegative factorzation of matrices[J].Linear Algebr Appl,1987,96:27-33.
  • 3[3]Kogan N and Berman A.Characteriation of completely positive graphs[J].Discrete Math,1993,114:297-304.
  • 4[4]XU C Q.completely positive matrices of order 5[J]. Acta Math Appl Sinica, 2001,17:550-562.
  • 5[5]Baumert L D.Extreme Copositive Quadratic forms[J].Pacific J Math,1966,19:197-204.
  • 6[6]Hall M Jr.Discrete Problems[J].A Survey of Namerical Analysis,New York,1962.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部