期刊文献+

一种易用于抛物线方程的非局部边界条件 被引量:3

An easily used nonlocal boundary condition for parabolic equation
下载PDF
导出
摘要 提出一种将非局部边界条件用于抛物线方程的方法,该方法不仅可以处理各个角度波的入射问题,而且可以直接应用于PE的各种算法中,数值结果表明用NLBC处理平面波的传播时,计算结果与实际符合得较好。 :In this paper, a useful nonlocal boundary conditions method are offered which can be easily applied to parabolic equation. The method can not only handle the propagation of plane waves even when very large angles are involved but also can be worked with all kinds of parabolic equation algorithms directly. Numerical results show that with the nonlocal boundary condition the propagation of plane waves is perfectly (handled).
出处 《安徽大学学报(自然科学版)》 CAS 2004年第2期45-49,共5页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60371041) 安徽省教育厅重点科研基金资助项目(2002kj032)
关键词 抛物线方程 非局部边界条件 角度波 平面波 无线电波 parabolic equation nonlocal boundary conditions plane wave
  • 相关文献

参考文献1

二级参考文献6

  • 1施长海.任意形状异体目标的宽带雷达散射截面AWE法分析[J].安徽大学学报:自然科学版,2001,25(3).
  • 2KANE S, YEE. Numerical Solution of Initial Boundary Value Problems Involving Maxwell' s Equations in Isotropic Media [J]. IEEE, AP- 14, 1966.
  • 3P G PETROPOULOS. Stability and phase error analysis of FD - TD in dispersive dielectrics [J]. IEEE, AP-42, 1994.
  • 4J L YOUNG, A KITTICHARTPHAYAK,Y M KWOD, and D SULLIVAN. On the dispersion errors related to type schemes [J]. IEEE, MTT-43, 1995.
  • 5T DEVEZE and W TABBARA. A fourth - order scheme for the FDTD algorithm applied Io Maxwell' sequation [ J]. IEEE - APS, 1992.
  • 6DEVEZE..A boundary condition for the fourth order FDTD scheme [J]. IEEE - APS, 1992.

共引文献3

同被引文献21

  • 1黄志祥,吴先良.高阶PE算法及其在非局部边界条件中的应用[J].合肥工业大学学报(自然科学版),2004,27(12):1558-1561. 被引量:3
  • 2[8]Bamberger A,Engquist B,Halpern L,et al. Parabolic wave equation approximations in heterogeneous media[J].SIAM J Appl Math,1998,48:99-128.
  • 3[9]Collins M D.A split-step Padé solution for the parabolic equation method[J]. J Acoust Soc Amer,1993,93(4):1 736-1 742.
  • 4[1]Leontovich M A,Fock V A. Solution of the problem of propagation of electromagnetic waves along the earth's surface by the method of parabolic equation[J].J Phys USSR, 1946,10:13-23.
  • 5[2]Fock V A.Electromagnetic diffraction and propagation problems[M].New York: Pergamon Press,1965.213-234.
  • 6[3]Levy M F.Parabolic equation methods for electromagnetic wave propagation[J]. London: The Institution of Electrical Engineers,2000.5-10.
  • 7[4]Bergener J P.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1994,114:185-200.
  • 8[5]Bergener J P.Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1996,127:363-379.
  • 9[6]Vassallo C,Collino F.Highly efficient absorbing boundary conditions forthe beam propagation method[J]. J Lightwave Technology,1996,14:1 570-1 577.
  • 10Bergener J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Comp Physics, 1996,127 : 363- 379.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部