期刊文献+

遗传算法中自适应伸缩搜索空间的方法 被引量:1

Self-adaptive search space expansion scheme for GA
下载PDF
导出
摘要 在求解优化问题时,与进化策略和进化规划不同,遗传算法依赖于所给定的搜索空间。但对于大多数实际问题,并不知道最优解所在的区域,因而无法给出适当的搜索空间,大大影响了遗传算法的性能。针对这一问题提出了一种自适应伸缩搜索空间的方法,它包括扩展阶段和收缩阶段。前者能够快速找到一个包含全局最优解但较为粗糙的搜索空间,后者则不断地细化这个空间。文中方法可以从任意初始空间出发并很快获得较为精确的上下界。同时,当应用到动态环境时,也能够迅速地适应新的适应度曲面。仿真实验证明了其优越性能。 Unlike evaluation strategy (ES) and evaluation programing (EP) genetic algorithm (GA) strongly depends on the given search space for the optimal solution problem. The interval of existing optimal solution is unknown in most practical problem, then the suitable search space can not be given and the performance of GA are influence grently. A self-adaptive search space expansion scheme (SA-S^2ES) is proposed to cure this problem. It contains two steps: coarse-step and fine-step. The formen can quickly find a more coarse search interval including the overall situation optimal solution and the latter can refine this interval iteratively. The more precise lower and upper bounds can be obtained with this scheme from any initial search space. It is suited quickly to new suitability bend surface when dynamic environment is used. Simulation experiment results substantiate excellent performance of SA-S^2ES.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第2期245-247,共3页 Systems Engineering and Electronics
基金 国家自然科学基金重点项目资助课题(60133010)
关键词 遗传算法 自适应伸缩搜索空间 全局最优解 扩展阶段 收缩阶段 数值优化算法 genetic algorithm search space expansion self-adaptive
  • 相关文献

参考文献5

  • 1[1]Holland J H. Adaptation in Nature and Artificial System[M].Cambridge, MA:MIT Press,1992.
  • 2[2]De Jong K A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems[D]. Ph.D Dissertation, University of Michigan,1975,76-9381.
  • 3[3]Goldbexg D E. Genetic Algorithms in Search, Optimization and Machine Leaming[M]. Boston, MA:Addison-Wesley,1989.
  • 4[4]Deb K, Beyer H G. Self-Adaptive Cenetic Algorithms with Simulated Binary Crossover[J]. Evolutionary Computation,2001,9(2):137-221.
  • 5[5]Cheng S, Hwang C. Optimal Approximation of Linear Systems by a Differential Evolution Algorithm[J].IEEE Trans. on Syst.,Man, Cybem.A,2001,31(6):698-707.

同被引文献7

  • 1JOHN H. Adaption in natural and artificial systems [ M]. Ann Arbor, MI: The University of Michigan Press, 1975.
  • 2PAUL S H. Evolution and optimization seeking [ M]. New York: John Wiley & Sons, 1995.
  • 3ZBIGNIEW M. Genetic algorithms + data structures = Evolution programs [M]. Berlin: Springer-Verlag, 1992.
  • 4PANZHENG - JUN, KANG LI - SHAN, NIE SI - XIANG. Evolving both the topology and weights of neural networks [ J]. Parallel Algorithms and Applications, 1996, 9(3/4) : 299 -307.
  • 5HEINZ M, DIRKS V. Predictive models for the breeder genetic algorithm [J]. Evolutionary computation, 1993, 1(1):25-49.
  • 6王欣星,周晖.基于混合遗传—模拟退火算法的日前购电策略研究[J].水电能源科学,2007,25(5):149-153. 被引量:3
  • 7刘静,钟伟才,刘芳,焦李成.组织进化数值优化算法[J].计算机学报,2004,27(2):157-167. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部