期刊文献+

基于对角隐式Runge-Kutta公式的无约束优化方法

Methods based on semi-diagonal implicit Runge-Kutta formulae for unconstrained optimization
下载PDF
导出
摘要 通过把一个无约束优化问题转化为一个等价的常微分方程,利用二阶半对角隐式Runge Kutta公式构造了求解无约束优化问题的LRKOPT算法。LRKOPT算法具有与IMPBOT方法相似的数值特性,但LRKOPT算法可以看成是最速下降方向与牛顿法方向的非线性组合,而IMPBOT方法为它们两者之间的线性组合。在目标函数为一致凸函数的假设条件下,证明了LRKOPT方法的具有全局收敛和局部超线性收敛性。数值结果表明LRKOPT方法具有很好的数值稳定性并且LRKOPT方法的计算效率优于IMPBOT方法。 A LRKOPT algorithm of solving unconstrained optimization problem is constructed using two-orders semi-diagonal implicit Runge-Kutta formulas through transforming the unconstrained optimization problem to the equivalant ordinary differential equtions. The LRKOPT algorithm possesses numerical performance being simillar to IMPBOT method, but the LRKOPT algorithm can regard as a nonlinear composition between the steepest descent direction and the Newton direction and the IMPBOT method as its linear composition. Under the assumption condition of taking target function as an uniform convex function. We have proved that the LRKOPT has the global convergence and partial superlinear convergence. Numerical results show that the LRKOPT method has better numerical stability and its calculation efficiency prior to the IMPBOT one.
作者 罗新龙
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第2期248-252,267,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(90204001) 北京邮电大学信息工程学院基金(010719)资助课题
关键词 全局收敛 超线性收敛 对角隐式Runge-Kutta公式 无约束优化 LRKOPT算法 global convergence superlinear convergence Runge-Kutta method unconstrained optimization
  • 相关文献

参考文献2

二级参考文献17

  • 1E. Allgower and K. Georg, Simplicial and continuous methods for approximating fixed points and solutions to systems of equations, SIAM Review, 22(1980), 28-85.
  • 2C. A. Botsaris and D. H. Jacobson, A Newton-type curvilinear search method for optimization, Journal of mathematical analysis and applications, 54(1976), 217-229.
  • 3C. A. Botsaris, Differential gradient methods, Journal of mathematical analysis and applications, 63(1978), 177-198.
  • 4C. A. Botsaris, A curvilinear optjmlzation method based on iterative estimation of the eigensystem of the Hessian matrix, Journal of mathematical analysis and applications,63(1978), 396-411.
  • 5C. A. Botsaris, A class of methods for unconstrained minimization based on stable numerical integration techniques, Journal of mathematical analysis and applications, 63(1978),729-749.
  • 6A.A. Brown and M.C. Bartholomew-Biggs, Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations, Journal of optimization and theory applications, 62(1989), 211-224.
  • 7J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, SIAM, 1996.
  • 8R. Fletcher,An algorithm for solving linearly constrained optimization problem, Mathematical Programming, 2(1972), 133-165.
  • 9R. Fletcher, Practical methods of optimizations, Vol. 1, unconstrained optimization, John Wiley & Sons, 1980.
  • 10E. Hairer, S.P. Norsett and G. Wanner, Solving ordinary differential equations I, nonstiff problems, Springer-Verlag, 1987.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部