期刊文献+

利用小波包变换实现电力系统谐波分析 被引量:60

POWER SYSTEM HARMONIC ANALYSIS USING WAVELET PACKET TRANSFORM
下载PDF
导出
摘要 小波包变换(WPT)建立在小波变换的基础上,可以实现信号频带的均匀划分,能够更好地提取信号的时频特性,具有更好的谐波分析特性。但是现有的小波包变换算法实现的频带划分不是按频率大小顺序排列的,给系统和谐波分析带来混乱。根据采样定理和滤波器组实现电路分析了小波包变换实现频带划分的特点,并利用改进的小波包变换实现算法进行系统分析,实例验证这种新的小波包分解结构对谐波分析具有更好的特性。 Using wavelet package transform (WPT) constructed on the basis of wavelet transform, the frequency band of signals can be uniformly divided and the signal features in time domain and frequency domain can be better extracted, so WPT possesses better performance for harmonic analysis. However, with the commonly used implementation method of WPT, the decomposed frequency sub bands of the signal are not arranged according to the frequency value of the sub bands, therefore, it brings disarray in signal processing. According to the sampling theorem and the implementation of filter bank, the character of frequency band division by WPT is analyzed and a new WPT algorithm for power system harmonic analysis is put forward. It is verified by practical examples that the new WPT decomposition structure possesses better performance.
出处 《电网技术》 EI CSCD 北大核心 2004年第5期41-45,共5页 Power System Technology
关键词 电力系统 谐波分析 小波包变换 滤波器组 信号频带 Algorithms Decomposition Frequency domain analysis Harmonic analysis Signal processing Time domain analysis Wavelet transforms
  • 相关文献

参考文献6

  • 1[1]Santoso S. Power quality assessment via wavelet transform analysis[J]. IEEE Trans on Power Delivery, 1996, 11(2): 924-930.
  • 2[2]Pham V L, Wong K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms[J] . IEE Proceedings of Generation, Transmission and Distribution, 1999, 146(3): 249-254.
  • 3[3]Pham V L, Wong K P. Antidistortion method for wavelet transform filter banks and nonstationary power system waveform harmonic analysis[J]. IEE Proceedings of Generation, Transmission and Distribution, 2001, 148(2): 117-122.
  • 4[4]Angrisani L, Daponte P, Apuzzo M D, Testa A. A measurement method based on the wavelet transform for power quality analysis[J]. IEEE Trans on Power Delivery, 1998, 13(4): 990-998.
  • 5[5]Daubechies I. Ten Lectures on Wavelet[M]. Society forIndustrial and AppliedMathmatics, Philadelphia(Pennsylvania), 1992.
  • 6[6]Chui C K. The Introduction to Wavelet[M]. Academic Press Inc., 1992.

同被引文献445

引证文献60

二级引证文献677

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部