摘要
本文提出了一种新型的DDoS入侵检测方法,在建立正常网络流量模型基础上,对网络流量的自相似性—Hurst参数、Hurst参数的时变函数H(t)进行分析,对网络流量进行实时限幅,由自相似性的变化来预测DDoS攻击,并用数据库对攻击定位。试验表明基于网络流量的统计分析方法能够在一定程度上检测出DDoS攻击,比传统的基于特征匹配的DDoS入侵检测方法,在实时性、准确率上有较大提高。
This paper presents a novel mechanism of DDoS Intrude Detection. We do researches on constructing normal model of network traffic, analysizing Self-Similarity of network traffics-Hurst Parameter, and its time variable function H(t). Through limiting the extent of network traffic in time, we measure the change of H Parameter brought by DDoS attack. Moreover we use Distributed Database to refine the DDoS attack. As it shown by the research result, this statistical analysis method can detect DDoS attack and is more reliable on the recognition of kinds of DDoS attack than any other traditional method based on character recognition-
出处
《计算机科学》
CSCD
北大核心
2004年第3期80-85,共6页
Computer Science
基金
国家九七三(项目号973-1-4-2)
电子科技大学青年基金支持